Combining Texts

All the ideas for 'fragments/reports', 'Laws of Nature' and 'Foundations without Foundationalism'

expand these ideas     |    start again     |     specify just one area for these texts


79 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Square of Opposition has two contradictory pairs, one contrary pair, and one sub-contrary pair [Harré]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / G. Quantification / 1. Quantification
Traditional quantifiers combine ordinary language generality and ontology assumptions [Harré]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Some quantifiers, such as 'any', rule out any notion of order within their range [Harré]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
Scientific properties are not observed qualities, but the dispositions which create them [Harré]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
10. Modality / A. Necessity / 7. Natural Necessity
Laws of nature remain the same through any conditions, if the underlying mechanisms are unchanged [Harré]
14. Science / A. Basis of Science / 1. Observation
In physical sciences particular observations are ordered, but in biology only the classes are ordered [Harré]
14. Science / A. Basis of Science / 3. Experiment
Reports of experiments eliminate the experimenter, and present results as the behaviour of nature [Harré]
14. Science / A. Basis of Science / 5. Anomalies
We can save laws from counter-instances by treating the latter as analytic definitions [Harré]
14. Science / B. Scientific Theories / 1. Scientific Theory
Since there are three different dimensions for generalising laws, no one system of logic can cover them [Harré]
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
The grue problem shows that natural kinds are central to science [Harré]
'Grue' introduces a new causal hypothesis - that emeralds can change colour [Harré]
14. Science / C. Induction / 5. Paradoxes of Induction / b. Raven paradox
It is because ravens are birds that their species and their colour might be connected [Harré]
Non-black non-ravens just aren't part of the presuppositions of 'all ravens are black' [Harré]
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
The necessity of Newton's First Law derives from the nature of material things, not from a mechanism [Harré]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation idealises all of a thing's properties, but abstraction leaves some of them out [Harré]
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Science rests on the principle that nature is a hierarchy of natural kinds [Harré]
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
Classification is just as important as laws in natural science [Harré]
Newton's First Law cannot be demonstrated experimentally, as that needs absence of external forces [Harré]
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Laws can come from data, from theory, from imagination and concepts, or from procedures [Harré]
Are laws of nature about events, or types and universals, or dispositions, or all three? [Harré]
Are laws about what has or might happen, or do they also cover all the possibilities? [Harré]
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
Maybe laws of nature are just relations between properties? [Harré]
26. Natural Theory / D. Laws of Nature / 7. Strictness of Laws
We take it that only necessary happenings could be laws [Harré]
Laws describe abstract idealisations, not the actual mess of nature [Harré]
Must laws of nature be universal, or could they be local? [Harré]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Laws of nature state necessary connections of things, events and properties, based on models of mechanisms [Harré]
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
In counterfactuals we keep substances constant, and imagine new situations for them [Harré]
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]