Combining Texts

All the ideas for 'works', 'Sets and Numbers' and 'Replies on 'Limits of Abstraction''

expand these ideas     |    start again     |     specify just one area for these texts


23 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Concern for rigour can get in the way of understanding phenomena [Fine,K]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
There is no stage at which we can take all the sets to have been generated [Fine,K]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
We might combine the axioms of set theory with the axioms of mereology [Fine,K]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Assigning an entity to each predicate in semantics is largely a technical convenience [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
Sets exist where their elements are, but numbers are more like universals [Maddy]
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
A generative conception of abstracts proposes stages, based on concepts of previous objects [Fine,K]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction-theoretic imperialists think Fregean abstracts can represent every mathematical object [Fine,K]
We can combine ZF sets with abstracts as urelements [Fine,K]
We can create objects from conditions, rather than from concepts [Fine,K]