Combining Texts

All the ideas for 'works (all lost)', 'Foundations without Foundationalism' and 'Consciousness Explained'

expand these ideas     |    start again     |     specify just one area for these texts


74 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / a. Dispositions
We can bring dispositions into existence, as in creating an identifier [Dennett, by Mumford]
9. Objects / D. Essence of Objects / 13. Nominal Essence
Words are fixed by being attached to similarity clusters, without mention of 'essences' [Dennett]
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / b. Primary/secondary
Light wavelengths entering the eye are only indirectly related to object colours [Dennett]
14. Science / C. Induction / 1. Induction
Brains are essentially anticipation machines [Dennett]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / a. Consciousness
We can't draw a clear line between conscious and unconscious [Dennett]
Perhaps the brain doesn't 'fill in' gaps in consciousness if no one is looking. [Dennett]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
Conscious events can only be explained in terms of unconscious events [Dennett]
15. Nature of Minds / B. Features of Minds / 3. Privacy
We can know a lot of what it is like to be a bat, and nothing important is unknown [Dennett]
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
"Qualia" can be replaced by complex dispositional brain states [Dennett]
15. Nature of Minds / B. Features of Minds / 6. Inverted Qualia
We can't assume that dispositions will remain normal when qualia have been inverted [Dennett]
15. Nature of Minds / B. Features of Minds / 7. Blindsight
In peripheral vision we see objects without their details, so blindsight is not that special [Dennett]
Blindsight subjects glean very paltry information [Dennett]
16. Persons / B. Nature of the Self / 4. Presupposition of Self
People accept blurred boundaries in many things, but insist self is All or Nothing [Dennett]
16. Persons / B. Nature of the Self / 7. Self and Body / c. Self as brain controller
The psychological self is an abstraction, not a thing in the brain [Dennett]
16. Persons / E. Rejecting the Self / 2. Self as Social Construct
Selves are not soul-pearls, but artefacts of social processes [Dennett]
16. Persons / E. Rejecting the Self / 3. Narrative Self
We tell stories about ourselves, to protect, control and define who we are [Dennett]
We spin narratives about ourselves, and the audience posits a centre of gravity for them [Dennett]
16. Persons / E. Rejecting the Self / 4. Denial of the Self
The brain is controlled by shifting coalitions, guided by good purposeful habits [Dennett]
17. Mind and Body / A. Mind-Body Dualism / 6. Epiphenomenalism
If an epiphenomenon has no physical effects, it has to be undetectable [Dennett]
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Dualism wallows in mystery, and to accept it is to give up [Dennett]
17. Mind and Body / C. Functionalism / 6. Homuncular Functionalism
All functionalism is 'homuncular', of one grain size or another [Dennett]
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
Visual experience is composed of neural activity, which we find pleasing [Dennett]
It is arbitrary to say which moment of brain processing is conscious [Dennett]
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / b. Limited purposes
Originally there were no reasons, purposes or functions; since there were no interests, there were only causes [Dennett]