Combining Texts

All the ideas for 'Prior Analytics', 'What Required for Foundation for Maths?' and 'Tropes'

expand these ideas     |    start again     |     specify just one area for these texts


49 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotle was the first to use schematic letters in logic [Aristotle, by Potter]
Aristotelian syllogisms are three-part, subject-predicate, existentially committed, with laws of thought [Aristotle, by Hanna]
Aristotelian sentences are made up by one of four 'formative' connectors [Aristotle, by Engelbretsen]
Aristotelian identified 256 possible syllogisms, saying that 19 are valid [Aristotle, by Devlin]
Aristotle replaced Plato's noun-verb form with unions of pairs of terms by one of four 'copulae' [Aristotle, by Engelbretsen/Sayward]
Aristotle listed nineteen valid syllogisms (though a few of them were wrong) [Aristotle, by Devlin]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Aristotle's said some Fs are G or some Fs are not G, forgetting that there might be no Fs [Bostock on Aristotle]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
There are three different deductions for actual terms, necessary terms and possible terms [Aristotle]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Deduction is when we suppose one thing, and another necessarily follows [Aristotle]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Aristotle places terms at opposite ends, joined by a quantified copula [Aristotle, by Sommers]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Aristotle's logic is based on the subject/predicate distinction, which leads him to substances and properties [Aristotle, by Benardete,JA]
5. Theory of Logic / G. Quantification / 1. Quantification
Affirming/denying sentences are universal, particular, or indeterminate [Aristotle]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Aristotelian logic has two quantifiers of the subject ('all' and 'some') [Aristotle, by Devlin]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
We might treat both tropes and substances as fundamental, so we can't presume it is just tropes [Daly]
8. Modes of Existence / B. Properties / 13. Tropes / b. Critique of tropes
More than one trope (even identical ones!) can occupy the same location [Daly]
If tropes are linked by the existence of concurrence, a special relation is needed to link them all [Daly]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
10. Modality / A. Necessity / 4. De re / De dicto modality
A deduction is necessary if the major (but not the minor) premise is also necessary [Aristotle]
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Linguistic terms form a hierarchy, with higher terms predicable of increasing numbers of things [Aristotle, by Engelbretsen]