Combining Texts

All the ideas for 'On Propositions: What they are,and Meaning', 'Universals' and 'Foundations without Foundationalism'

expand these ideas     |    start again     |     specify just one area for these texts


73 ideas

3. Truth / A. Truth Problems / 5. Truth Bearers
In its primary and formal sense, 'true' applies to propositions, not beliefs [Russell]
3. Truth / B. Truthmakers / 1. For Truthmakers
The truth or falsehood of a belief depends upon a fact to which the belief 'refers' [Russell]
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
Propositions of existence, generalities, disjunctions and hypotheticals make correspondence tricky [Russell]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
One moderate nominalist view says that properties and relations exist, but they are particulars [Armstrong]
8. Modes of Existence / B. Properties / 13. Tropes / b. Critique of tropes
If properties and relations are particulars, there is still the problem of how to classify and group them [Armstrong]
8. Modes of Existence / D. Universals / 1. Universals
Should we decide which universals exist a priori (through words), or a posteriori (through science)? [Armstrong]
8. Modes of Existence / D. Universals / 4. Uninstantiated Universals
It is claimed that some universals are not exemplified by any particular, so must exist separately [Armstrong]
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
'Resemblance Nominalism' finds that in practice the construction of resemblance classes is hard [Armstrong]
'Resemblance Nominalism' says properties are resemblances between classes of particulars [Armstrong]
8. Modes of Existence / E. Nominalism / 3. Predicate Nominalism
'Predicate Nominalism' says that a 'universal' property is just a predicate applied to lots of things [Armstrong]
8. Modes of Existence / E. Nominalism / 4. Concept Nominalism
Concept and predicate nominalism miss out some predicates, and may be viciously regressive [Armstrong]
'Concept Nominalism' says a 'universal' property is just a mental concept applied to lots of things [Armstrong]
8. Modes of Existence / E. Nominalism / 5. Class Nominalism
'Class Nominalism' may explain properties if we stick to 'natural' sets, and ignore random ones [Armstrong]
'Class Nominalism' says that properties or kinds are merely membership of a set (e.g. of white things) [Armstrong]
'Class Nominalism' cannot explain co-extensive properties, or sets with random members [Armstrong]
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
'Mereological Nominalism' sees whiteness as a huge white object consisting of all the white things [Armstrong]
'Mereological Nominalism' may work for whiteness, but it doesn't seem to work for squareness [Armstrong]
11. Knowledge Aims / A. Knowledge / 4. Belief / b. Elements of beliefs
The three questions about belief are its contents, its success, and its character [Russell]
17. Mind and Body / B. Behaviourism / 4. Behaviourism Critique
If we object to all data which is 'introspective' we will cease to believe in toothaches [Russell]
17. Mind and Body / D. Property Dualism / 3. Property Dualism
There are distinct sets of psychological and physical causal laws [Russell]
19. Language / D. Propositions / 1. Propositions
Our important beliefs all, if put into words, take the form of propositions [Russell]
A proposition expressed in words is a 'word-proposition', and one of images an 'image-proposition' [Russell]
A proposition is what we believe when we believe truly or falsely [Russell]