Combining Texts

All the ideas for 'Katzav on limitations of dispositions', 'Consciousness: matter becomes imagination' and 'First-Order Modal Logic'

expand these ideas     |    start again     |     specify just one area for these texts


70 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
8. Modes of Existence / D. Universals / 5. Universals as Concepts
Prior to language, concepts are universals created by self-mapping of brain activity [Edelman/Tononi]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
13. Knowledge Criteria / E. Relativism / 4. Cultural relativism
Cultures have a common core of colour naming, based on three axes of colour pairs [Edelman/Tononi]
15. Nature of Minds / A. Nature of Mind / 5. Unity of Mind
A conscious human being rapidly reunifies its mind after any damage to the brain [Edelman/Tononi]
15. Nature of Minds / A. Nature of Mind / 8. Brain
A conscious state endures for about 100 milliseconds, known as the 'specious present' [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / b. Essence of consciousness
Consciousness is a process (of neural interactions), not a location, thing, property, connectivity, or activity [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / c. Parts of consciousness
The three essentials of conscious experience are privateness, unity and informativeness [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / d. Purpose of consciousness
Consciousness can create new axioms, but computers can't do that [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
Consciousness arises from high speed interactions between clusters of neurons [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 4. Intentionality / a. Nature of intentionality
Dreams and imagery show the brain can generate awareness and meaning without input [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 4. Intentionality / b. Intentionality theories
Physicists see information as a measure of order, but for biologists it is symbolic exchange between animals [Edelman/Tononi]
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
The sensation of red is a point in neural space created by dimensions of neuronal activity [Edelman/Tononi]
16. Persons / B. Nature of the Self / 7. Self and Body / a. Self needs body
The self is founded on bodily awareness centred in the brain stem [Edelman/Tononi]
16. Persons / E. Rejecting the Self / 2. Self as Social Construct
A sense of self begins either internally, or externally through language and society [Edelman/Tononi]
16. Persons / F. Free Will / 5. Against Free Will
Brains can initiate free actions before the person is aware of their own decision [Edelman/Tononi]
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / b. Multiple realisability
Consciousness is a process, not a thing, as it maintains unity as its composition changes [Edelman/Tononi]
18. Thought / B. Mechanics of Thought / 3. Modularity of Mind
Brain complexity balances segregation and integration, like a good team of specialists [Edelman/Tononi]
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Information-processing views of the brain assume the existence of 'information', and dubious brain codes [Edelman/Tononi]
18. Thought / C. Content / 6. Broad Content
Consciousness involves interaction with persons and the world, as well as brain functions [Edelman/Tononi]
18. Thought / D. Concepts / 2. Origin of Concepts / a. Origin of concepts
Concepts and generalisations result from brain 'global mapping' by 'reentry' [Edelman/Tononi, by Searle]
Concepts arise when the brain maps its own activities [Edelman/Tononi]
22. Metaethics / B. Value / 1. Nature of Value / b. Fact and value
Systems that generate a sense of value are basic to the primitive brain [Edelman/Tononi]
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
The natural kinds are objects, processes and properties/relations [Ellis]
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Least action is not a causal law, but a 'global law', describing a global essence [Ellis]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
A species requires a genus, and its essence includes the essence of the genus [Ellis]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
A hierarchy of natural kinds is elaborate ontology, but needed to explain natural laws [Ellis]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
Without general principles, we couldn't predict the behaviour of dispositional properties [Ellis]