Combining Texts

All the ideas for 'Confessions of a Philosopher', 'The Tarskian Turn' and 'Intro to Gdel's Theorems'

expand these ideas     |    start again     |     specify just one area for these texts


91 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Philosophy is the most general intellectual discipline [Horsten]
2. Reason / D. Definition / 2. Aims of Definition
A definition should allow the defined term to be eliminated [Horsten]
3. Truth / A. Truth Problems / 1. Truth
Semantic theories of truth seek models; axiomatic (syntactic) theories seek logical principles [Horsten]
Truth is a property, because the truth predicate has an extension [Horsten]
3. Truth / A. Truth Problems / 2. Defining Truth
Truth has no 'nature', but we should try to describe its behaviour in inferences [Horsten]
3. Truth / A. Truth Problems / 5. Truth Bearers
Propositions have sentence-like structures, so it matters little which bears the truth [Horsten]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Modern correspondence is said to be with the facts, not with true propositions [Horsten]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The correspondence 'theory' is too vague - about both 'correspondence' and 'facts' [Horsten]
3. Truth / D. Coherence Truth / 2. Coherence Truth Critique
The coherence theory allows multiple coherent wholes, which could contradict one another [Horsten]
3. Truth / E. Pragmatic Truth / 1. Pragmatic Truth
The pragmatic theory of truth is relative; useful for group A can be useless for group B [Horsten]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarski's hierarchy lacks uniform truth, and depends on contingent factors [Horsten]
Tarski Bi-conditional: if you'll assert φ you'll assert φ-is-true - and also vice versa [Horsten]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories have a regress problem in describing truth in the languages for the models [Horsten]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Axiomatic approaches avoid limiting definitions to avoid the truth predicate, and limited sizes of models [Horsten]
Axiomatic approaches to truth avoid the regress problem of semantic theories [Horsten]
An axiomatic theory needs to be of maximal strength, while being natural and sound [Horsten]
'Reflexive' truth theories allow iterations (it is T that it is T that p) [Horsten]
A good theory of truth must be compositional (as well as deriving biconditionals) [Horsten]
The Naďve Theory takes the bi-conditionals as axioms, but it is inconsistent, and allows the Liar [Horsten]
Axiomatic theories take truth as primitive, and propose some laws of truth as axioms [Horsten]
By adding truth to Peano Arithmetic we increase its power, so truth has mathematical content! [Horsten]
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
Friedman-Sheard theory keeps classical logic and aims for maximum strength [Horsten]
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
Kripke-Feferman has truth gaps, instead of classical logic, and aims for maximum strength [Horsten]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Inferential deflationism says truth has no essence because no unrestricted logic governs the concept [Horsten]
Deflationism skips definitions and models, and offers just accounts of basic laws of truth [Horsten]
Deflationism concerns the nature and role of truth, but not its laws [Horsten]
This deflationary account says truth has a role in generality, and in inference [Horsten]
Deflationism says truth isn't a topic on its own - it just concerns what is true [Horsten]
Deflation: instead of asserting a sentence, we can treat it as an object with the truth-property [Horsten]
4. Formal Logic / E. Nonclassical Logics / 1. Nonclassical Logics
Nonclassical may accept T/F but deny applicability, or it may deny just T or F as well [Horsten]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Doubt is thrown on classical logic by the way it so easily produces the liar paradox [Horsten]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Deduction Theorem: ψ only derivable from φ iff φ→ψ are axioms [Horsten]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'partial function' maps only some elements to another set [Smith,P]
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
A theory is 'non-conservative' if it facilitates new mathematical proofs [Horsten]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
It is easier to imagine truth-value gaps (for the Liar, say) than for truth-value gluts (both T and F) [Horsten]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Satisfaction is a primitive notion, and very liable to semantical paradoxes [Horsten]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
The first incompleteness theorem means that consistency does not entail soundness [Horsten]
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Strengthened Liar: 'this sentence is not true in any context' - in no context can this be evaluated [Horsten]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
English expressions are denumerably infinite, but reals are nondenumerable, so many are unnameable [Horsten]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
Robinson Arithmetic (Q) is not negation complete [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
ZFC showed that the concept of set is mathematical, not logical, because of its existence claims [Horsten]
Set theory is substantial over first-order arithmetic, because it enables new proofs [Horsten]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Predicativism says mathematical definitions must not include the thing being defined [Horsten]
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
We may believe in atomic facts, but surely not complex disjunctive ones? [Horsten]
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
In the supervaluationist account, disjunctions are not determined by their disjuncts [Horsten]
If 'Italy is large' lacks truth, so must 'Italy is not large'; but classical logic says it's large or it isn't [Horsten]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Some claim that indicative conditionals are believed by people, even though they are not actually held true [Horsten]
16. Persons / C. Self-Awareness / 3. Limits of Introspection
Why don't we experience or remember going to sleep at night? [Magee]
19. Language / C. Assigning Meanings / 1. Syntax
A theory of syntax can be based on Peano arithmetic, thanks to the translation by Gödel coding [Horsten]