Combining Texts

All the ideas for 'Frege's Theory of Numbers', 'What Required for Foundation for Maths?' and 'Begriffsschrift'

expand these ideas     |    start again     |     specify just one area for these texts


52 ideas

1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
Frege changed philosophy by extending logic's ability to check the grounds of thinking [Potter on Frege]
2. Reason / B. Laws of Thought / 1. Laws of Thought
We should not describe human laws of thought, but how to correctly track truth [Frege, by Fisher]
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
I don't use 'subject' and 'predicate' in my way of representing a judgement [Frege]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
For Frege, 'All A's are B's' means that the concept A implies the concept B [Frege, by Walicki]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Frege has a judgement stroke (vertical, asserting or judging) and a content stroke (horizontal, expressing) [Frege, by Weiner]
The laws of logic are boundless, so we want the few whose power contains the others [Frege]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
In 1879 Frege developed second order logic [Frege, by Putnam]
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Frege replaced Aristotle's subject/predicate form with function/argument form [Frege, by Weiner]
5. Theory of Logic / G. Quantification / 1. Quantification
A quantifier is a second-level predicate (which explains how it contributes to truth-conditions) [Frege, by George/Velleman]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
For Frege the variable ranges over all objects [Frege, by Tait]
Frege's domain for variables is all objects, but modern interpretations first fix the domain [Dummett on Frege]
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Frege reduced most quantifiers to 'everything' combined with 'not' [Frege, by McCullogh]
Frege introduced quantifiers for generality [Frege, by Weiner]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
Proof theory began with Frege's definition of derivability [Frege, by Prawitz]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Frege produced axioms for logic, though that does not now seem the natural basis for logic [Frege, by Kaplan]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Parsons says counting is tagging as first, second, third..., and converting the last to a cardinal [Parsons,C, by Heck]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
It may be possible to define induction in terms of the ancestral relation [Frege, by Wright,C]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Frege's logic has a hierarchy of object, property, property-of-property etc. [Frege, by Smith,P]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence is not a first-order property, but the instantiation of a property [Frege, by Read]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
19. Language / C. Assigning Meanings / 4. Compositionality
Frege's account was top-down and decompositional, not bottom-up and compositional [Frege, by Potter]
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The predicate 'exists' is actually a natural language expression for a quantifier [Frege, by Weiner]