Combining Texts

All the ideas for 'Causation', 'Universals' and 'Philosophies of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


80 ideas

2. Reason / B. Laws of Thought / 6. Ockham's Razor
Epistemological Ockham's Razor demands good reasons, but the ontological version says reality is simple [Moreland]
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
7. Existence / D. Theories of Reality / 1. Ontologies
Existence theories must match experience, possibility, logic and knowledge, and not be self-defeating [Moreland]
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Tropes are like Hume's 'impressions', conceived as real rather than as ideal [Moreland]
8. Modes of Existence / B. Properties / 13. Tropes / b. Critique of tropes
In 'four colours were used in the decoration', colours appear to be universals, not tropes [Moreland]
A colour-trope cannot be simple (as required), because it is spread in space, and so it is complex [Moreland]
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
If dispositions are more fundamental than causes, then they won't conceptually reduce to them [Bird on Lewis]
8. Modes of Existence / D. Universals / 1. Universals
If properties are universals, what distinguishes two things which have identical properties? [Moreland]
One realism is one-over-many, which may be the model/copy view, which has the Third Man problem [Moreland]
Realists see properties as universals, which are single abstract entities which are multiply exemplifiable [Moreland]
8. Modes of Existence / D. Universals / 2. Need for Universals
The traditional problem of universals centres on the "One over Many", which is the unity of natural classes [Moreland]
Evidence for universals can be found in language, communication, natural laws, classification and ideals [Moreland]
8. Modes of Existence / D. Universals / 3. Instantiated Universals
The One-In-Many view says universals have abstract existence, but exist in particulars [Moreland]
8. Modes of Existence / D. Universals / 4. Uninstantiated Universals
Maybe universals are real, if properties themselves have properties, and relate to other properties [Moreland]
A naturalist and realist about universals is forced to say redness can be both moving and stationary [Moreland]
There are spatial facts about red particulars, but not about redness itself [Moreland]
How could 'being even', or 'being a father', or a musical interval, exist naturally in space? [Moreland]
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
Redness is independent of red things, can do without them, has its own properties, and has identity [Moreland]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Moderate nominalism attempts to embrace the existence of properties while avoiding universals [Moreland]
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
Unlike Class Nominalism, Resemblance Nominalism can distinguish natural from unnatural classes [Moreland]
8. Modes of Existence / E. Nominalism / 3. Predicate Nominalism
There can be predicates with no property, and there are properties with no predicate [Moreland]
8. Modes of Existence / E. Nominalism / 5. Class Nominalism
We should abandon the concept of a property since (unlike sets) their identity conditions are unclear [Moreland]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
Most philosophers think that the identity of indiscernibles is false [Moreland]
10. Modality / B. Possibility / 9. Counterfactuals
For true counterfactuals, both antecedent and consequent true is closest to actuality [Lewis]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
Abstractions are formed by the mind when it concentrates on some, but not all, the features of a thing [Moreland]
16. Persons / F. Free Will / 6. Determinism / a. Determinism
Determinism says there can't be two identical worlds up to a time, with identical laws, which then differ [Lewis]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
It is always open to a philosopher to claim that some entity or other is unanalysable [Moreland]
19. Language / D. Propositions / 2. Abstract Propositions / b. Propositions as possible worlds
A proposition is a set of possible worlds where it is true [Lewis]
26. Natural Theory / C. Causation / 5. Direction of causation
A theory of causation should explain why cause precedes effect, not take it for granted [Lewis, by Field,H]
I reject making the direction of causation axiomatic, since that takes too much for granted [Lewis]
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
It is just individious discrimination to pick out one cause and label it as 'the' cause [Lewis]
The modern regularity view says a cause is a member of a minimal set of sufficient conditions [Lewis]
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Regularity analyses could make c an effect of e, or an epiphenomenon, or inefficacious, or pre-empted [Lewis]
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
The counterfactual view says causes are necessary (rather than sufficient) for their effects [Lewis, by Bird]
Lewis has basic causation, counterfactuals, and a general ancestral (thus handling pre-emption) [Lewis, by Bird]
Counterfactual causation implies all laws are causal, which they aren't [Tooley on Lewis]
My counterfactual analysis applies to particular cases, not generalisations [Lewis]
One event causes another iff there is a causal chain from first to second [Lewis]
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Lewis's account of counterfactuals is fine if we know what a law of nature is, but it won't explain the latter [Cohen,LJ on Lewis]
27. Natural Reality / D. Time / 1. Nature of Time / h. Presentism
'Presentism' is the view that only the present moment exists [Moreland]