Combining Texts

All the ideas for 'Causation', 'reports' and 'A Mathematical Introduction to Logic (2nd)'

expand these ideas     |    start again     |     specify just one area for these texts


46 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'F(x)' is the unique value which F assumes for a value of x [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
'ran R' indicates the 'range' of objects being related to [Enderton]
'dom R' indicates the 'domain' of objects having a relation [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
If dispositions are more fundamental than causes, then they won't conceptually reduce to them [Bird on Lewis]
10. Modality / A. Necessity / 8. Transcendental Necessity
Even the gods cannot strive against necessity [Pittacus, by Diog. Laertius]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
10. Modality / B. Possibility / 9. Counterfactuals
For true counterfactuals, both antecedent and consequent true is closest to actuality [Lewis]
16. Persons / F. Free Will / 6. Determinism / a. Determinism
Determinism says there can't be two identical worlds up to a time, with identical laws, which then differ [Lewis]
19. Language / D. Propositions / 2. Abstract Propositions / b. Propositions as possible worlds
A proposition is a set of possible worlds where it is true [Lewis]
26. Natural Theory / C. Causation / 5. Direction of causation
A theory of causation should explain why cause precedes effect, not take it for granted [Lewis, by Field,H]
I reject making the direction of causation axiomatic, since that takes too much for granted [Lewis]
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
It is just individious discrimination to pick out one cause and label it as 'the' cause [Lewis]
The modern regularity view says a cause is a member of a minimal set of sufficient conditions [Lewis]
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Regularity analyses could make c an effect of e, or an epiphenomenon, or inefficacious, or pre-empted [Lewis]
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
The counterfactual view says causes are necessary (rather than sufficient) for their effects [Lewis, by Bird]
Lewis has basic causation, counterfactuals, and a general ancestral (thus handling pre-emption) [Lewis, by Bird]
Counterfactual causation implies all laws are causal, which they aren't [Tooley on Lewis]
My counterfactual analysis applies to particular cases, not generalisations [Lewis]
One event causes another iff there is a causal chain from first to second [Lewis]
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Lewis's account of counterfactuals is fine if we know what a law of nature is, but it won't explain the latter [Cohen,LJ on Lewis]