Combining Texts

All the ideas for 'Counterpart theory and Quant. Modal Logic', 'Modal Logics and Philosophy' and 'Why the Universe Exists'

expand these ideas     |    start again     |     specify just one area for these texts


63 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
There are three axiom schemas for propositional logic [Girle]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
Proposition logic has definitions for its three operators: or, and, and identical [Girle]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
There are seven modalities in S4, each with its negation [Girle]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
◊p → □◊p is the hallmark of S5 [Girle]
S5 has just six modalities, and all strings can be reduced to those [Girle]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Possible worlds logics use true-in-a-world rather than true [Girle]
Modal logic has four basic modal negation equivalences [Girle]
Modal logics were studied in terms of axioms, but now possible worlds semantics is added [Girle]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
9. Objects / D. Essence of Objects / 1. Essences of Objects
Aristotelian essentialism says essences are not relative to specification [Lewis]
10. Modality / A. Necessity / 3. Types of Necessity
Analytic truths are divided into logically and conceptually necessary [Girle]
10. Modality / A. Necessity / 7. Natural Necessity
Causal necessities hold in all worlds compatible with the laws of nature [Lewis]
10. Modality / B. Possibility / 1. Possibility
Possibilities can be logical, theoretical, physical, economic or human [Girle]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A world has 'access' to a world it generates, which is important in possible worlds semantics [Girle]
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
It doesn't take the whole of a possible Humphrey to win the election [Lewis]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart theory is bizarre, as no one cares what happens to a mere counterpart [Kripke on Lewis]
Counterparts are not the original thing, but resemble it more than other things do [Lewis]
If the closest resembler to you is in fact quite unlike you, then you have no counterpart [Lewis]
Essential attributes are those shared with all the counterparts [Lewis]
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Gravity is unusual, in that it always attracts and never repels [New Sci.]
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
In the Big Bang general relativity fails, because gravity is too powerful [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Quantum electrodynamics incorporates special relativity and quantum mechanics [New Sci.]
Photons have zero rest mass, so virtual photons have infinite range [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In the standard model all the fundamental force fields merge at extremely high energies [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons move fast, so are subject to special relativity [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force is repulsive at short distances, strong at medium, and fades at long [New Sci.]
Gluons, the particles carrying the strong force, interact because of their colour charge [New Sci.]
The strong force binds quarks tight, and the nucleus more weakly [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / b. Quarks
Quarks in threes can build hadrons with spin ½ or with spin 3/2 [New Sci.]
Three different colours of quark (as in the proton) can cancel out to give no colour [New Sci.]
Classifying hadrons revealed two symmetry patterns, produced by three basic elements [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The four fundamental forces (gravity, electromagnetism, weak and strong) are the effects of particles [New Sci.]
The weak force explains beta decay, and the change of type by quarks and leptons [New Sci.]
Three particles enable the weak force: W+ and W- are charged, and Z° is not [New Sci.]
The weak force particles are heavy, so the force has a short range [New Sci.]
Why do the charges of the very different proton and electron perfectly match up? [New Sci.]
The Standard Model cannot explain dark energy, survival of matter, gravity, or force strength [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Spin is a built-in ration of angular momentum [New Sci.]
Quarks have red, green or blue colour charge (akin to electric charge) [New Sci.]
Fermions, with spin ½, are antisocial, and cannot share quantum states [New Sci.]
Spin is akin to rotation, and is easily measured in a magnetic field [New Sci.]
Particles are spread out, with wave-like properties, and higher energy shortens the wavelength [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
The mass of protons and neutrinos is mostly binding energy, not the quarks [New Sci.]
Gravitional mass turns out to be the same as inertial mass [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Neutrons are slightly heavier than protons, and decay into them by emitting an electron [New Sci.]
Top, bottom, charm and strange quarks quickly decay into up and down [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos were proposed as the missing energy in neutron beta decay [New Sci.]
Only neutrinos spin anticlockwise [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / g. Anti-matter
Standard antineutrinos have opposite spin and opposite lepton number [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The symmetry of unified electromagnetic and weak forces was broken by the Higgs field [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
String theory is now part of 11-dimensional M-Theory, involving p-branes [New Sci.]
String theory might be tested by colliding strings to make bigger 'stringballs' [New Sci.]
String theory offers a quantum theory of gravity, by describing the graviton [New Sci.]
Supersymmetric string theory can be expressed using loop quantum gravity [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
Only supersymmetry offers to incorporate gravity into the scheme [New Sci.]
Supersymmetry says particles and superpartners were unities, but then split [New Sci.]
Supersymmetry has extra heavy bosons and heavy fermions [New Sci.]
The evidence for supersymmetry keeps failing to appear [New Sci.]
27. Natural Reality / C. Space / 4. Substantival Space
The Higgs field means even low energy space is not empty [New Sci.]
27. Natural Reality / E. Cosmology / 8. Dark Matter
Dark matter must have mass, to produce gravity, and no electric charge, to not reflect light [New Sci.]