Combining Texts

All the ideas for 'Sameness and Substance Renewed', 'Believing the Axioms I' and 'Understanding the Infinite'

expand these ideas     |    start again     |     specify just one area for these texts


83 ideas

1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
We learn a concept's relations by using it, without reducing it to anything [Wiggins]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
New axioms are being sought, to determine the size of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
Extensional sets are clearer, simpler, unique and expressive [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
Infinite sets are essential for giving an account of the real numbers [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
A large array of theorems depend on the Axiom of Choice [Maddy]
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
(λx)[Man x] means 'the property x has iff x is a man'. [Wiggins]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
What exists can't depend on our conceptual scheme, and using all conceptual schemes is too liberal [Sider on Wiggins]
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
We can accept criteria of distinctness and persistence, without making the counterfactual claims [Mackie,P on Wiggins]
Activity individuates natural things, functions do artefacts, and intentions do artworks [Wiggins]
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
The idea of 'thisness' is better expressed with designation/predication and particular/universal [Wiggins]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
A sortal essence is a thing's principle of individuation [Wiggins, by Mackie,P]
Wiggins's sortal essentialism rests on a thing's principle of individuation [Wiggins, by Mackie,P]
The evening star is the same planet but not the same star as the morning star, since it is not a star [Wiggins]
'Sortalism' says parts only compose a whole if it falls under a sort or kind [Wiggins, by Hossack]
Identity a=b is only possible with some concept to give persistence and existence conditions [Wiggins, by Strawson,P]
A thing is necessarily its highest sortal kind, which entails an essential constitution [Wiggins, by Strawson,P]
Many predicates are purely generic, or pure determiners, rather than sortals [Wiggins]
The possibility of a property needs an essential sortal concept to conceive it [Wiggins]
9. Objects / B. Unity of Objects / 3. Unity Problems / d. Coincident objects
Objects can only coincide if they are of different kinds; trees can't coincide with other trees [Wiggins, by Sider]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Is the Pope's crown one crown, if it is made of many crowns? [Wiggins]
Boundaries are not crucial to mountains, so they are determinate without a determinate extent [Wiggins]
9. Objects / C. Structure of Objects / 5. Composition of an Object
Identity is an atemporal relation, but composition is relative to times [Wiggins, by Sider]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
If I destroy an item, I do not destroy each part of it [Wiggins]
9. Objects / D. Essence of Objects / 3. Individual Essences
We can forget about individual or particularized essences [Wiggins]
9. Objects / D. Essence of Objects / 8. Essence as Explanatory
Essences are not explanations, but individuations [Wiggins]
9. Objects / D. Essence of Objects / 9. Essence and Properties
Essentialism is best represented as a predicate-modifier: □(a exists → a is F) [Wiggins, by Mackie,P]
9. Objects / D. Essence of Objects / 13. Nominal Essence
The nominal essence is the idea behind a name used for sorting [Wiggins]
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
It is easier to go from horses to horse-stages than from horse-stages to horses [Wiggins]
9. Objects / E. Objects over Time / 9. Ship of Theseus
The question is not what gets the title 'Theseus' Ship', but what is identical with the original [Wiggins]
9. Objects / F. Identity among Objects / 1. Concept of Identity
Identity over a time and at a time aren't different concepts [Wiggins]
Hesperus=Hesperus, and Phosphorus=Hesperus, so necessarily Phosphorus=Hesperus [Wiggins]
9. Objects / F. Identity among Objects / 2. Defining Identity
The formal properties of identity are reflexivity and Leibniz's Law [Wiggins]
9. Objects / F. Identity among Objects / 3. Relative Identity
Relative Identity is incompatible with the Indiscernibility of Identicals [Wiggins, by Strawson,P]
Relativity of Identity makes identity entirely depend on a category [Wiggins]
To identify two items, we must have a common sort for them [Wiggins]
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Do both 'same f as' and '=' support Leibniz's Law? [Wiggins]
Substitutivity, and hence most reasoning, needs Leibniz's Law [Wiggins]
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Possible worlds rest on the objects about which we have suppositions [Wiggins]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / b. Worlds as fictions
Not every story corresponds to a possible world [Wiggins]
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Asking 'what is it?' nicely points us to the persistence of a continuing entity [Wiggins]
18. Thought / D. Concepts / 2. Origin of Concepts / a. Origin of concepts
The mind conceptualizes objects; yet objects impinge upon the mind [Wiggins]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
We can use 'concept' for the reference, and 'conception' for sense [Wiggins]
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
Lawlike propensities are enough to individuate natural kinds [Wiggins]