Combining Texts

All the ideas for 'works', 'works' and 'Understanding the Infinite'

expand these ideas     |    start again     |     specify just one area for these texts


60 ideas

3. Truth / A. Truth Problems / 6. Verisimilitude
Truth does not admit of more and less [Frege]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Frege did not think of himself as working with sets [Frege, by Hart,WD]
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null set is indefensible, because it collects nothing [Frege, by Burge]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Frege proposed a realist concept of a set, as the extension of a predicate or concept or function [Frege, by Benardete,JA]
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Frege frequently expressed a contempt for language [Frege, by Dummett]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Frege thinks there is an independent logical order of the truths, which we must try to discover [Frege, by Hart,WD]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
For Frege, predicates are names of functions that map objects onto the True and False [Frege, by McGinn]
Frege gives a functional account of predication so that we can dispense with predicates [Frege, by Benardete,JA]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Frege always, and fatally, neglected the domain of quantification [Dummett on Frege]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Basic truths of logic are not proved, but seen as true when they are understood [Frege, by Burge]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
If '5' is the set of all sets with five members, that may be circular, and you can know a priori if the set has content [Benardete,JA on Frege]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Frege aimed to discover the logical foundations which justify arithmetical judgements [Frege, by Burge]
Eventually Frege tried to found arithmetic in geometry instead of in logic [Frege, by Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / A. Nature of Existence / 3. Being / i. Deflating being
Frege's logic showed that there is no concept of being [Frege, by Scruton]
9. Objects / F. Identity among Objects / 5. Self-Identity
Frege made identity a logical notion, enshrined above all in the formula 'for all x, x=x' [Frege, by Benardete,JA]
11. Knowledge Aims / A. Knowledge / 2. Understanding
To understand a thought, understand its inferential connections to other thoughts [Frege, by Burge]
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Frege's concept of 'self-evident' makes no reference to minds [Frege, by Burge]
12. Knowledge Sources / A. A Priori Knowledge / 4. A Priori as Necessities
An apriori truth is grounded in generality, which is universal quantification [Frege, by Burge]
14. Science / B. Scientific Theories / 1. Scientific Theory
The building blocks contain the whole contents of a discipline [Frege]
18. Thought / E. Abstraction / 8. Abstractionism Critique
Frege said concepts were abstract entities, not mental entities [Frege, by Putnam]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
A thought is not psychological, but a condition of the world that makes a sentence true [Frege, by Miller,A]
19. Language / C. Assigning Meanings / 5. Fregean Semantics
Frege's 'sense' is the strict and literal meaning, stripped of tone [Frege, by Miller,A]
'Sense' solves the problems of bearerless names, substitution in beliefs, and informativeness [Frege, by Miller,A]
19. Language / E. Analyticity / 1. Analytic Propositions
'P or not-p' seems to be analytic, but does not fit Kant's account, lacking clear subject or predicate [Frege, by Weiner]
19. Language / E. Analyticity / 2. Analytic Truths
Analytic truths are those that can be demonstrated using only logic and definitions [Frege, by Miller,A]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
There are two sides to men - the pleasantly social, and the violent and creative [Diderot, by Berlin]
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
Frege put forward an ontological argument for the existence of numbers [Frege, by Benardete,JA]