Combining Texts

All the ideas for 'Truth and Predication', 'Elements of Geometry' and 'Understanding the Infinite'

expand these ideas     |    start again     |     specify just one area for these texts


77 ideas

2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
3. Truth / A. Truth Problems / 2. Defining Truth
A comprehensive theory of truth probably includes a theory of predication [Davidson]
3. Truth / A. Truth Problems / 3. Value of Truth
Antirealism about truth prevents its use as an intersubjective standard [Davidson]
3. Truth / A. Truth Problems / 8. Subjective Truth
'Epistemic' truth depends what rational creatures can verify [Davidson]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
There is nothing interesting or instructive for truths to correspond to [Davidson]
The Slingshot assumes substitutions give logical equivalence, and thus identical correspondence [Davidson]
Two sentences can be rephrased by equivalent substitutions to correspond to the same thing [Davidson]
3. Truth / D. Coherence Truth / 1. Coherence Truth
Coherence truth says a consistent set of sentences is true - which ties truth to belief [Davidson]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
We can explain truth in terms of satisfaction - but also explain satisfaction in terms of truth [Davidson]
Satisfaction is a sort of reference, so maybe we can define truth in terms of reference? [Davidson]
Axioms spell out sentence satisfaction. With no free variables, all sequences satisfy the truths [Davidson]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Many say that Tarski's definitions fail to connect truth to meaning [Davidson]
Tarski does not tell us what his various truth predicates have in common [Davidson]
Truth is the basic concept, because Convention-T is agreed to fix the truths of a language [Davidson]
To define a class of true sentences is to stipulate a possible language [Davidson]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth is basic and clear, so don't try to replace it with something simpler [Davidson]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Tarski is not a disquotationalist, because you can assign truth to a sentence you can't quote [Davidson]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a generalised form of reference [Davidson]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
8. Modes of Existence / B. Properties / 11. Properties as Sets
Treating predicates as sets drops the predicate for a new predicate 'is a member of', which is no help [Davidson]
10. Modality / B. Possibility / 6. Probability
Probability can be constrained by axioms, but that leaves open its truth nature [Davidson]
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Predicates are a source of generality in sentences [Davidson]
19. Language / A. Nature of Meaning / 2. Meaning as Mental
If we reject corresponding 'facts', we should also give up the linked idea of 'representations' [Davidson]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
You only understand an order if you know what it is to obey it [Davidson]
Utterances have the truth conditions intended by the speaker [Davidson]
19. Language / A. Nature of Meaning / 6. Meaning as Use
Meaning involves use, but a sentence has many uses, while meaning stays fixed [Davidson]
19. Language / A. Nature of Meaning / 7. Meaning Holism / a. Sentence meaning
We recognise sentences at once as linguistic units; we then figure out their parts [Davidson]
19. Language / C. Assigning Meanings / 3. Predicates
Modern predicates have 'places', and are sentences with singular terms deleted from the places [Davidson]
The concept of truth can explain predication [Davidson]
19. Language / C. Assigning Meanings / 4. Compositionality
If you assign semantics to sentence parts, the sentence fails to compose a whole [Davidson]
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
Top-down semantic analysis must begin with truth, as it is obvious, and explains linguistic usage [Davidson]
19. Language / D. Propositions / 1. Propositions
'Humanity belongs to Socrates' is about humanity, so it's a different proposition from 'Socrates is human' [Davidson]
19. Language / F. Communication / 6. Interpreting Language / c. Principle of charity
The principle of charity says an interpreter must assume the logical constants [Davidson]
19. Language / F. Communication / 6. Interpreting Language / d. Metaphor
We indicate use of a metaphor by its obvious falseness, or trivial truth [Davidson]