Combining Texts

All the ideas for 'Conditionals', 'World and Essence' and 'What Required for Foundation for Maths?'

expand these ideas     |    start again     |     specify just one area for these texts


46 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
9. Objects / A. Existence of Objects / 4. Impossible objects
Plantinga proposes necessary existent essences as surrogates for the nonexistent things [Plantinga, by Stalnaker]
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
The 'identity criteria' of a name are a group of essential and established facts [Plantinga]
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
'Being Socrates' and 'being identical with Socrates' characterise Socrates, so they are among his properties [Plantinga]
9. Objects / D. Essence of Objects / 2. Types of Essence
Does Socrates have essential properties, plus a unique essence (or 'haecceity') which entails them? [Plantinga]
9. Objects / D. Essence of Objects / 9. Essence and Properties
Properties are 'trivially essential' if they are instantiated by every object in every possible world [Plantinga]
X is essentially P if it is P in every world, or in every X-world, or in the actual world (and not ¬P elsewhere) [Plantinga]
If a property is ever essential, can it only ever be an essential property? [Plantinga]
Essences are instantiated, and are what entails a thing's properties and lack of properties [Plantinga]
9. Objects / F. Identity among Objects / 5. Self-Identity
Does 'being identical with Socrates' name a property? I can think of no objections to it [Plantinga]
10. Modality / A. Necessity / 4. De re / De dicto modality
'De re' modality is as clear as 'de dicto' modality, because they are logically equivalent [Plantinga]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Validity can preserve certainty in mathematics, but conditionals about contingents are another matter [Edgington]
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
There are many different conditional mental states, and different conditional speech acts [Edgington]
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Are conditionals truth-functional - do the truth values of A and B determine the truth value of 'If A, B'? [Edgington]
'If A,B' must entail ¬(A & ¬B); otherwise we could have A true, B false, and If A,B true, invalidating modus ponens [Edgington]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
We can imagine being beetles or alligators, so it is possible we might have such bodies [Plantinga]