Combining Texts

All the ideas for 'Structures and Structuralism in Phil of Maths', 'Repetition' and 'Introduction to the Theory of Logic'

expand these ideas     |    start again     |     specify just one area for these texts


38 ideas

3. Truth / A. Truth Problems / 8. Subjective Truth
Subjective truth can only be sustained by repetition [Kierkegaard, by Carlisle]
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Sets can be defined by 'enumeration', or by 'abstraction' (based on a property) [Zalabardo]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'Cartesian Product' of two sets relates them by pairing every element with every element [Zalabardo]
A 'partial ordering' is reflexive, antisymmetric and transitive [Zalabardo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Determinacy: an object is either in a set, or it isn't [Zalabardo]
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: Determinate totals of objects always make a set [Zalabardo]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
A first-order 'sentence' is a formula with no free variables [Zalabardo]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ |= φ for sentences if φ is true when all of Γ is true [Zalabardo]
Γ |= φ if φ is true when all of Γ is true, for all structures and interpretations [Zalabardo]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
Propositional logic just needs ¬, and one of ∧, ∨ and → [Zalabardo]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
The semantics shows how truth values depend on instantiations of properties and relations [Zalabardo]
We can do semantics by looking at given propositions, or by building new ones [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
We make a truth assignment to T and F, which may be true and false, but merely differ from one another [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Logically true' (|= φ) is true for every truth-assignment [Zalabardo]
Logically true sentences are true in all structures [Zalabardo]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Some formulas are 'satisfiable' if there is a structure and interpretation that makes them true [Zalabardo]
A sentence-set is 'satisfiable' if at least one truth-assignment makes them all true [Zalabardo]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure models a sentence if it is true in the model, and a set of sentences if they are all true in the model [Zalabardo]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
If a set is defined by induction, then proof by induction can be applied to it [Zalabardo]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
23. Ethics / F. Existentialism / 8. Eternal Recurrence
Life is a repetition when what has been now becomes [Kierkegaard]