Combining Texts

All the ideas for 'Deriving Kripkean Claims with Abstract Objects', 'A Tour through Mathematical Logic' and 'Set Theory and Its Philosophy'

expand these ideas     |    start again     |     specify just one area for these texts


35 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory's three roles: taming the infinite, subject-matter of mathematics, and modes of reasoning [Potter]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Usually the only reason given for accepting the empty set is convenience [Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There is at least one limit level [Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Nowadays we derive our conception of collections from the dependence between them [Potter]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
The 'limitation of size' principles say whether properties collectivise depends on the number of objects [Potter]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology elides the distinction between the cards in a pack and the suits [Potter]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
We can formalize second-order formation rules, but not inference rules [Potter]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
Supposing axioms (rather than accepting them) give truths, but they are conditional [Potter]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
If set theory didn't found mathematics, it is still needed to count infinite sets [Potter]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
It is remarkable that all natural number arithmetic derives from just the Peano Axioms [Potter]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is a set consisting entirely of ordered pairs [Potter]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Abstract objects are actually constituted by the properties by which we conceive them [Zalta]
9. Objects / B. Unity of Objects / 2. Substance / b. Need for substance
If dependence is well-founded, with no infinite backward chains, this implies substances [Potter]
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
Collections have fixed members, but fusions can be carved in innumerable ways [Potter]
10. Modality / A. Necessity / 1. Types of Modality
Priority is a modality, arising from collections and members [Potter]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Abstract objects are captured by second-order modal logic, plus 'encoding' formulas [Zalta]