Combining Texts

All the ideas for 'Investigations in the Foundations of Set Theory I', 'Philosophy of Mathematics' and 'Intro: Theories of Vagueness'

expand these ideas     |    start again     |     specify just one area for these texts


95 ideas

2. Reason / A. Nature of Reason / 6. Coherence
Coherence is a primitive, intuitive notion, not reduced to something formal [Shapiro]
2. Reason / D. Definition / 7. Contextual Definition
An 'implicit definition' gives a direct description of the relations of an entity [Shapiro]
2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal operators are usually treated as quantifiers [Shapiro]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
S5 collapses iterated modalities (◊□P→□P, and ◊◊P→◊P) [Keefe/Smith]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Axiom of Choice: some function has a value for every set in a given set [Shapiro]
The Axiom of Choice seems to license an infinite amount of choosing [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Anti-realists reject set theory [Shapiro]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
The two standard explanations of consequence are semantic (in models) and deductive [Shapiro]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Intuitionism only sanctions modus ponens if all three components are proved [Shapiro]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Either logic determines objects, or objects determine logic, or they are separate [Shapiro]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle might be seen as a principle of omniscience [Shapiro]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Classical connectives differ from their ordinary language counterparts; '∧' is timeless, unlike 'and' [Shapiro]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A function is just an arbitrary correspondence between collections [Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Maybe plural quantifiers should be understood in terms of classes or sets [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is 'satisfiable' if it has a model [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory deals with relations, reference and extensions [Shapiro]
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Theory ontology is never complete, but is only determined 'up to isomorphism' [Shapiro]
The set-theoretical hierarchy contains as many isomorphism types as possible [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Virtually all of mathematics can be modeled in set theory [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are thought of as either Cauchy sequences or Dedekind cuts [Shapiro]
Understanding the real-number structure is knowing usage of the axiomatic language of analysis [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Cuts are made by the smallest upper or largest lower number, some of them not rational [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
There is no grounding for mathematics that is more secure than mathematics [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
For intuitionists, proof is inherently informal [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers just need an initial object, successors, and an induction principle [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Mathematics originally concerned the continuous (geometry) and the discrete (arithmetic) [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Mathematical foundations may not be sets; categories are a popular rival [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Baseball positions and chess pieces depend entirely on context [Shapiro]
The even numbers have the natural-number structure, with 6 playing the role of 3 [Shapiro]
Could infinite structures be apprehended by pattern recognition? [Shapiro]
The 4-pattern is the structure common to all collections of four objects [Shapiro]
The main mathematical structures are algebraic, ordered, and topological [Shapiro]
Some structures are exemplified by both abstract and concrete [Shapiro]
Mathematical structures are defined by axioms, or in set theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
The main versions of structuralism are all definitionally equivalent [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Is there is no more to structures than the systems that exemplify them? [Shapiro]
Number statements are generalizations about number sequences, and are bound variables [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Because one structure exemplifies several systems, a structure is a one-over-many [Shapiro]
There is no 'structure of all structures', just as there is no set of all sets [Shapiro]
Shapiro's structuralism says model theory (comparing structures) is the essence of mathematics [Shapiro, by Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
Does someone using small numbers really need to know the infinite structure of arithmetic? [Shapiro]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We distinguish realism 'in ontology' (for objects), and 'in truth-value' (for being either true or false) [Shapiro]
If mathematical objects are accepted, then a number of standard principles will follow [Shapiro]
Platonists claim we can state the essence of a number without reference to the others [Shapiro]
Platonism must accept that the Peano Axioms could all be false [Shapiro]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is an outright hindrance to five-dimensional geometry [Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
A stone is a position in some pattern, and can be viewed as an object, or as a location [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Can the ideal constructor also destroy objects? [Shapiro]
Presumably nothing can block a possible dynamic operation? [Shapiro]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Can we discover whether a deck is fifty-two cards, or a person is time-slices or molecules? [Shapiro]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete boundary now seems blurred, and would need a defence [Shapiro]
Mathematicians regard arithmetic as concrete, and group theory as abstract [Shapiro]
7. Existence / D. Theories of Reality / 7. Fictionalism
Fictionalism eschews the abstract, but it still needs the possible (without model theory) [Shapiro]
Structuralism blurs the distinction between mathematical and ordinary objects [Shapiro]
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
Objects such as a cloud or Mount Everest seem to have fuzzy boundaries in nature [Keefe/Smith]
7. Existence / D. Theories of Reality / 10. Vagueness / c. Vagueness as ignorance
If someone is borderline tall, no further information is likely to resolve the question [Keefe/Smith]
The simplest approach, that vagueness is just ignorance, retains classical logic and semantics [Keefe/Smith]
The epistemic view of vagueness must explain why we don't know the predicate boundary [Keefe/Smith]
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluationism keeps true-or-false where precision can be produced, but not otherwise [Keefe/Smith]
Vague statements lack truth value if attempts to make them precise fail [Keefe/Smith]
Some of the principles of classical logic still fail with supervaluationism [Keefe/Smith]
The semantics of supervaluation (e.g. disjunction and quantification) is not classical [Keefe/Smith]
Supervaluation misunderstands vagueness, treating it as a failure to make things precise [Keefe/Smith]
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
A third truth-value at borderlines might be 'indeterminate', or a value somewhere between 0 and 1 [Keefe/Smith]
People can't be placed in a precise order according to how 'nice' they are [Keefe/Smith]
If truth-values for vagueness range from 0 to 1, there must be someone who is 'completely tall' [Keefe/Smith]
How do we decide if my coat is red to degree 0.322 or 0.321? [Keefe/Smith]
9. Objects / A. Existence of Objects / 1. Physical Objects
The notion of 'object' is at least partially structural and mathematical [Shapiro]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
A blurry border is still a border [Shapiro]
Vague predicates involve uncertain properties, uncertain objects, and paradoxes of gradual change [Keefe/Smith]
Many vague predicates are multi-dimensional; 'big' involves height and volume; heaps include arrangement [Keefe/Smith]
If there is a precise borderline area, that is not a case of vagueness [Keefe/Smith]
10. Modality / A. Necessity / 6. Logical Necessity
Logical modalities may be acceptable, because they are reducible to satisfaction in models [Shapiro]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Why does the 'myth' of possible worlds produce correct modal logic? [Shapiro]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We apprehend small, finite mathematical structures by abstraction from patterns [Shapiro]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Simple types can be apprehended through their tokens, via abstraction [Shapiro]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
We can apprehend structures by focusing on or ignoring features of patterns [Shapiro]
We can focus on relations between objects (like baseballers), ignoring their other features [Shapiro]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstract objects might come by abstraction over an equivalence class of base entities [Shapiro]