Combining Texts

All the ideas for 'Commentary on 'De Anima'', 'What Required for Foundation for Maths?' and 'The Concept of Truth for Formalized Languages'

expand these ideas     |    start again     |     specify just one area for these texts


68 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
3. Truth / A. Truth Problems / 2. Defining Truth
Tarski proved that truth cannot be defined from within a given theory [Tarski, by Halbach]
Tarski proved that any reasonably expressive language suffers from the liar paradox [Tarski, by Horsten]
'True sentence' has no use consistent with logic and ordinary language, so definition seems hopeless [Tarski]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Tarski's Theorem renders any precise version of correspondence impossible [Tarski, by Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarskian semantics says that a sentence is true iff it is satisfied by every sequence [Tarski, by Hossack]
Tarski gave up on the essence of truth, and asked how truth is used, or how it functions [Tarski, by Horsten]
Tarski did not just aim at a definition; he also offered an adequacy criterion for any truth definition [Tarski, by Halbach]
Tarski enumerates cases of truth, so it can't be applied to new words or languages [Davidson on Tarski]
Tarski define truths by giving the extension of the predicate, rather than the meaning [Davidson on Tarski]
Tarski made truth relative, by only defining truth within some given artificial language [Tarski, by O'Grady]
Tarski has to avoid stating how truths relate to states of affairs [Kirkham on Tarski]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth only applies to closed formulas, but we need satisfaction of open formulas to define it [Burgess on Tarski]
Tarski uses sentential functions; truly assigning the objects to variables is what satisfies them [Tarski, by Rumfitt]
We can define the truth predicate using 'true of' (satisfaction) for variables and some objects [Tarski, by Horsten]
For physicalism, reduce truth to satisfaction, then define satisfaction as physical-plus-logic [Tarski, by Kirkham]
Insight: don't use truth, use a property which can be compositional in complex quantified sentence [Tarski, by Kirkham]
Tarski gave axioms for satisfaction, then derived its explicit definition, which led to defining truth [Tarski, by Davidson]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Tarski made truth respectable, by proving that it could be defined [Tarski, by Halbach]
Tarski defined truth for particular languages, but didn't define it across languages [Davidson on Tarski]
Tarski didn't capture the notion of an adequate truth definition, as Convention T won't prove non-contradiction [Halbach on Tarski]
Tarski says that his semantic theory of truth is completely neutral about all metaphysics [Tarski, by Haack]
Physicalists should explain reference nonsemantically, rather than getting rid of it [Tarski, by Field,H]
A physicalist account must add primitive reference to Tarski's theory [Field,H on Tarski]
Tarski had a theory of truth, and a theory of theories of truth [Tarski, by Read]
Tarski's 'truth' is a precise relation between the language and its semantics [Tarski, by Walicki]
Tarskian truth neglects the atomic sentences [Mulligan/Simons/Smith on Tarski]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Tarski's had the first axiomatic theory of truth that was minimally adequate [Tarski, by Horsten]
Tarski defined truth, but an axiomatisation can be extracted from his inductive clauses [Tarski, by Halbach]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
There is a semi-categorical axiomatisation of set-theory [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is invariant under arbitrary permutations, so it seems to be a logical term [Tarski, by McGee]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
A name denotes an object if the object satisfies a particular sentential function [Tarski]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Tarski built a compositional semantics for predicate logic, from dependent satisfactions [Tarski, by McGee]
Tarksi invented the first semantics for predicate logic, using this conception of truth [Tarski, by Kirkham]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Tarski avoids the Liar Paradox, because truth cannot be asserted within the object language [Tarski, by Fisher]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
21. Aesthetics / A. Aesthetic Experience / 3. Taste
Taste is the capacity to judge an object or representation which is thought to be beautiful [Tarski, by Schellekens]
22. Metaethics / B. Value / 2. Values / e. Death
The soul conserves the body, as we see by its dissolution when the soul leaves [Toletus]