Combining Texts

All the ideas for 'Theories of Everything', 'First-Order Modal Logic' and 'Intellectual Autobiography'

expand these ideas     |    start again     |     specify just one area for these texts


71 ideas

3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
Truthmakers are facts 'of' a domain, not something 'in' the domain [Sommers]
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
'Predicable' terms come in charged pairs, with one the negation of the other [Sommers, by Engelbretsen]
Logic which maps ordinary reasoning must be transparent, and free of variables [Sommers]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Predicate logic has to spell out that its identity relation '=' is an equivalent relation [Sommers]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Translating into quantificational idiom offers no clues as to how ordinary thinkers reason [Sommers]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
Sommers promotes the old idea that negation basically refers to terms [Sommers, by Engelbretsen]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Predicates form a hierarchy, from the most general, down to names at the bottom [Sommers]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
7. Existence / D. Theories of Reality / 2. Realism
Unfortunately for realists, modern logic cannot say that some fact exists [Sommers]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
19. Language / B. Reference / 1. Reference theories
In standard logic, names are the only way to refer [Sommers]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Work degrades into heat, but not vice versa [Close]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
First Law: energy can change form, but is conserved overall [Close]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Third Law: total order and minimum entropy only occurs at absolute zero [Close]
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
All motions are relative and ambiguous, but acceleration is the same in all inertial frames [Close]
The electric and magnetic are tightly linked, and viewed according to your own motion [Close]
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
The general relativity equations relate curvature in space-time to density of energy-momentum [Close]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Photon exchange drives the electro-magnetic force [Close]
Electric fields have four basic laws (two by Gauss, one by Ampère, one by Faraday) [Close]
Light isn't just emitted in quanta called photons - light is photons [Close]
In general relativity the energy and momentum of photons subjects them to gravity [Close]
Electro-magnetic waves travel at light speed - so light is electromagnetism! [Close]
In QED, electro-magnetism exists in quantum states, emitting and absorbing electrons [Close]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Quantum fields contain continual rapid creation and disappearance [Close]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons get their mass by interaction with the Higgs field [Close]
Dirac showed how electrons conform to special relativity [Close]
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Modern theories of matter are grounded in heat, work and energy [Close]
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The Higgs field is an electroweak plasma - but we don't know what stuff it consists of [Close]
27. Natural Reality / C. Space / 6. Space-Time
Space-time is indeterminate foam over short distances [Close]