Combining Texts

All the ideas for 'Leibniz: Guide for the Perplexed', 'Ontological Categories' and 'Infinity: Quest to Think the Unthinkable'

expand these ideas     |    start again     |     specify just one area for these texts


35 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
We negate predicates but do not negate names [Westerhoff]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal number is defined by the set that comes before it [Clegg]
Beyond infinity cardinals and ordinals can come apart [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
7. Existence / E. Categories / 1. Categories
Categories can be ordered by both containment and generality [Westerhoff]
How far down before we are too specialised to have a category? [Westerhoff]
Maybe objects in the same category have the same criteria of identity [Westerhoff]
Categories are base-sets which are used to construct states of affairs [Westerhoff]
Categories are held to explain why some substitutions give falsehood, and others meaninglessness [Westerhoff]
Categories systematize our intuitions about generality, substitutability, and identity [Westerhoff]
Categories as generalities don't give a criterion for a low-level cut-off point [Westerhoff]
7. Existence / E. Categories / 2. Categorisation
The aim is that everything should belong in some ontological category or other [Westerhoff]
7. Existence / E. Categories / 3. Proposed Categories
All systems have properties and relations, and most have individuals, abstracta, sets and events [Westerhoff]
7. Existence / E. Categories / 5. Category Anti-Realism
Ontological categories are like formal axioms, not unique and with necessary membership [Westerhoff]
Categories merely systematise, and are not intrinsic to objects [Westerhoff]
A thing's ontological category depends on what else exists, so it is contingent [Westerhoff]
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
Substance needs independence, unity, and stability (for individuation); also it is a subject, for predicates [Perkins]
9. Objects / D. Essence of Objects / 5. Essence as Kind
Essential kinds may be too specific to provide ontological categories [Westerhoff]