Combining Texts

All the ideas for 'works', 'The Birth of Tragedy' and 'Philosophy of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


107 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy begins in the horror and absurdity of existence [Nietzsche, by Ansell Pearson]
2. Reason / A. Nature of Reason / 6. Coherence
Coherence is a primitive, intuitive notion, not reduced to something formal [Shapiro]
2. Reason / D. Definition / 7. Contextual Definition
An 'implicit definition' gives a direct description of the relations of an entity [Shapiro]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Modal operators are usually treated as quantifiers [Shapiro]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Axiom of Choice: some function has a value for every set in a given set [Shapiro]
The Axiom of Choice seems to license an infinite amount of choosing [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Anti-realists reject set theory [Shapiro]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
The two standard explanations of consequence are semantic (in models) and deductive [Shapiro]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Intuitionism only sanctions modus ponens if all three components are proved [Shapiro]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Either logic determines objects, or objects determine logic, or they are separate [Shapiro]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle might be seen as a principle of omniscience [Shapiro]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Classical connectives differ from their ordinary language counterparts; '∧' is timeless, unlike 'and' [Shapiro]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A function is just an arbitrary correspondence between collections [Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Maybe plural quantifiers should be understood in terms of classes or sets [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is 'satisfiable' if it has a model [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory deals with relations, reference and extensions [Shapiro]
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Theory ontology is never complete, but is only determined 'up to isomorphism' [Shapiro]
The set-theoretical hierarchy contains as many isomorphism types as possible [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
Virtually all of mathematics can be modeled in set theory [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
Real numbers are thought of as either Cauchy sequences or Dedekind cuts [Shapiro]
Understanding the real-number structure is knowing usage of the axiomatic language of analysis [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Cuts are made by the smallest upper or largest lower number, some of them not rational [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
There is no grounding for mathematics that is more secure than mathematics [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
For intuitionists, proof is inherently informal [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers just need an initial object, successors, and an induction principle [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Mathematics originally concerned the continuous (geometry) and the discrete (arithmetic) [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Mathematical foundations may not be sets; categories are a popular rival [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Baseball positions and chess pieces depend entirely on context [Shapiro]
The even numbers have the natural-number structure, with 6 playing the role of 3 [Shapiro]
Could infinite structures be apprehended by pattern recognition? [Shapiro]
The 4-pattern is the structure common to all collections of four objects [Shapiro]
The main mathematical structures are algebraic, ordered, and topological [Shapiro]
Some structures are exemplified by both abstract and concrete [Shapiro]
Mathematical structures are defined by axioms, or in set theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
The main versions of structuralism are all definitionally equivalent [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Is there is no more to structures than the systems that exemplify them? [Shapiro]
Number statements are generalizations about number sequences, and are bound variables [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Because one structure exemplifies several systems, a structure is a one-over-many [Shapiro]
There is no 'structure of all structures', just as there is no set of all sets [Shapiro]
Shapiro's structuralism says model theory (comparing structures) is the essence of mathematics [Shapiro, by Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Does someone using small numbers really need to know the infinite structure of arithmetic? [Shapiro]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We distinguish realism 'in ontology' (for objects), and 'in truth-value' (for being either true or false) [Shapiro]
If mathematical objects are accepted, then a number of standard principles will follow [Shapiro]
Platonists claim we can state the essence of a number without reference to the others [Shapiro]
Platonism must accept that the Peano Axioms could all be false [Shapiro]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is an outright hindrance to five-dimensional geometry [Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
A stone is a position in some pattern, and can be viewed as an object, or as a location [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Can the ideal constructor also destroy objects? [Shapiro]
Presumably nothing can block a possible dynamic operation? [Shapiro]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Can we discover whether a deck is fifty-two cards, or a person is time-slices or molecules? [Shapiro]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The abstract/concrete boundary now seems blurred, and would need a defence [Shapiro]
Mathematicians regard arithmetic as concrete, and group theory as abstract [Shapiro]
7. Existence / D. Theories of Reality / 7. Fictionalism
Fictionalism eschews the abstract, but it still needs the possible (without model theory) [Shapiro]
Structuralism blurs the distinction between mathematical and ordinary objects [Shapiro]
9. Objects / A. Existence of Objects / 1. Physical Objects
The notion of 'object' is at least partially structural and mathematical [Shapiro]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
A blurry border is still a border [Shapiro]
10. Modality / A. Necessity / 6. Logical Necessity
Logical modalities may be acceptable, because they are reducible to satisfaction in models [Shapiro]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Why does the 'myth' of possible worlds produce correct modal logic? [Shapiro]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We apprehend small, finite mathematical structures by abstraction from patterns [Shapiro]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
Simple types can be apprehended through their tokens, via abstraction [Shapiro]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
We can apprehend structures by focusing on or ignoring features of patterns [Shapiro]
We can focus on relations between objects (like baseballers), ignoring their other features [Shapiro]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstract objects might come by abstraction over an equivalence class of base entities [Shapiro]
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]