Combining Texts

All the ideas for 'Monadology', 'Structures and Structuralism in Phil of Maths' and 'Foundations without Foundationalism'

expand these ideas     |    start again     |     specify just one area for these texts


87 ideas

2. Reason / B. Laws of Thought / 2. Sufficient Reason
No fact can be real and no proposition true unless there is a Sufficient Reason (even if we can't know it) [Leibniz]
3. Truth / D. Coherence Truth / 1. Coherence Truth
Everything in the universe is interconnected, so potentially a mind could know everything [Leibniz]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Falsehood involves a contradiction, and truth is contradictory of falsehood [Leibniz]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
The monad idea incomprehensibly spiritualises matter, instead of materialising soul [La Mettrie on Leibniz]
He replaced Aristotelian continuants with monads [Leibniz, by Wiggins]
Is a drop of urine really an infinity of thinking monads? [Voltaire on Leibniz]
It is unclear in 'Monadology' how extended bodies relate to mind-like monads. [Garber on Leibniz]
Changes in a monad come from an internal principle, and the diversity within its substance [Leibniz]
A 'monad' has basic perception and appetite; a 'soul' has distinct perception and memory [Leibniz]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
9. Objects / B. Unity of Objects / 2. Substance / e. Substance critique
If a substance is just a thing that has properties, it seems to be a characterless non-entity [Leibniz, by Macdonald,C]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
There must be some internal difference between any two beings in nature [Leibniz]
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Truths of reason are known by analysis, and are necessary; facts are contingent, and their opposites possible [Leibniz]
12. Knowledge Sources / A. A Priori Knowledge / 4. A Priori as Necessities
Mathematical analysis ends in primitive principles, which cannot be and need not be demonstrated [Leibniz]
12. Knowledge Sources / C. Rationalism / 1. Rationalism
We all expect the sun to rise tomorrow by experience, but astronomers expect it by reason [Leibniz]
15. Nature of Minds / B. Features of Minds / 3. Privacy
Increase a conscious machine to the size of a mill - you still won't see perceptions in it [Leibniz]
16. Persons / C. Self-Awareness / 2. Knowing the Self
We know the 'I' and its contents by abstraction from awareness of necessary truths [Leibniz]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
The true elements are atomic monads [Leibniz]
28. God / A. Divine Nature / 3. Divine Perfections
This is the most perfect possible universe, in its combination of variety with order [Leibniz]
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
God alone (the Necessary Being) has the privilege that He must exist if He is possible [Leibniz]