Combining Texts

All the ideas for 'Exigency to Exist in Essences', 'Philosophical Logic' and 'Infinity: Quest to Think the Unthinkable'

expand these ideas     |    start again     |     specify just one area for these texts


51 ideas

4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
It is still unsettled whether standard intuitionist logic is complete [Burgess]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
We can build one expanding sequence, instead of a chain of deductions [Burgess]
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
Models leave out meaning, and just focus on truth values [Burgess]
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal number is defined by the set that comes before it [Clegg]
Beyond infinity cardinals and ordinals can come apart [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
7. Existence / A. Nature of Existence / 5. Reason for Existence
Possibles demand existence, so as many of them as possible must actually exist [Leibniz]
God's sufficient reason for choosing reality is in the fitness or perfection of possibilities [Leibniz]
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
The actual universe is the richest composite of what is possible [Leibniz]