Combining Texts

All the ideas for 'Philosophy of Logic', 'A Mathematical Introduction to Logic (2nd)' and 'On Sufficient Reason'

expand these ideas     |    start again     |     specify just one area for these texts


46 ideas

2. Reason / B. Laws of Thought / 1. Laws of Thought
Necessities rest on contradiction, and contingencies on sufficient reason [Leibniz]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
For scientific purposes there is a precise concept of 'true-in-L', using set theory [Putnam]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Modern notation frees us from Aristotle's restriction of only using two class-names in premises [Putnam]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The universal syllogism is now expressed as the transitivity of subclasses [Putnam]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
'⊃' ('if...then') is used with the definition 'Px ⊃ Qx' is short for '¬(Px & ¬Qx)' [Putnam]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
'ran R' indicates the 'range' of objects being related to [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
'F(x)' is the unique value which F assumes for a value of x [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
In type theory, 'x ∈ y' is well defined only if x and y are of the appropriate type [Putnam]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Before the late 19th century logic was trivialised by not dealing with relations [Putnam]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Asserting first-order validity implicitly involves second-order reference to classes [Putnam]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Unfashionably, I think logic has an empirical foundation [Putnam]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
We can identify functions with certain sets - or identify sets with certain functions [Putnam]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Having a valid form doesn't ensure truth, as it may be meaningless [Putnam]
A logical truth or tautology is a logical consequence of the empty set [Enderton]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Sets larger than the continuum should be studied in an 'if-then' spirit [Putnam]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Nominalism only makes sense if it is materialist [Putnam]
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Physics is full of non-physical entities, such as space-vectors [Putnam]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
14. Science / A. Basis of Science / 4. Prediction
Most predictions are uninteresting, and are only sought in order to confirm a theory [Putnam]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Each of the infinite possible worlds has its own laws, and the individuals contain those laws [Leibniz]