Combining Texts

All the ideas for 'Mathematical Methods in Philosophy', 'Substance and Individuation in Leibniz' and 'The Nature of Mathematical Knowledge'

expand these ideas     |    start again     |     specify just one area for these texts


53 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Three stages of philosophical logic: syntactic (1905-55), possible worlds (1963-85), widening (1990-) [Horsten/Pettigrew]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Logical formalization makes concepts precise, and also shows their interrelation [Horsten/Pettigrew]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are sets with functions and relations, and truth built up from the components [Horsten/Pettigrew]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Mathematical intuition is not the type platonism needs [Kitcher]
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
Arithmetic is an idealizing theory [Kitcher]
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
7. Existence / A. Nature of Existence / 1. Nature of Existence
If 'exist' doesn't express a property, we can hardly ask for its essence [Horsten/Pettigrew]
8. Modes of Existence / A. Relations / 1. Nature of Relations
Scholastics treat relations as two separate predicates of the relata [Cover/O'Leary-Hawthorne]
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
If you individuate things by their origin, you still have to individuate the origins themselves [Cover/O'Leary-Hawthorne]
Numerical difference is a symmetrical notion, unlike proper individuation [Cover/O'Leary-Hawthorne]
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Haecceity as property, or as colourless thisness, or as singleton set [Cover/O'Leary-Hawthorne]
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
Maybe 'substance' is more of a mass-noun than a count-noun [Cover/O'Leary-Hawthorne]
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
We can ask for the nature of substance, about type of substance, and about individual substances [Cover/O'Leary-Hawthorne]
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
The general assumption is that substances cannot possibly be non-substances [Cover/O'Leary-Hawthorne]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Modern essences are sets of essential predicate-functions [Cover/O'Leary-Hawthorne]
Modern essentialists express essence as functions from worlds to extensions for predicates [Cover/O'Leary-Hawthorne]
9. Objects / E. Objects over Time / 12. Origin as Essential
Necessity-of-origin won't distinguish ex nihilo creations, or things sharing an origin [Cover/O'Leary-Hawthorne]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A Tarskian model can be seen as a possible state of affairs [Horsten/Pettigrew]
The 'spheres model' was added to possible worlds, to cope with counterfactuals [Horsten/Pettigrew]
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Epistemic logic introduced impossible worlds [Horsten/Pettigrew]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possible worlds models contain sets of possible worlds; this is a large metaphysical commitment [Horsten/Pettigrew]
Using possible worlds for knowledge and morality may be a step too far [Horsten/Pettigrew]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Even extreme modal realists might allow transworld identity for abstract objects [Cover/O'Leary-Hawthorne]
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
We can go beyond mere causal explanations if we believe in an 'order of being' [Cover/O'Leary-Hawthorne]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]