Combining Texts

All the ideas for 'The Boundary Stones of Thought', 'Investigations in the Foundations of Set Theory I' and 'A Mathematical Introduction to Logic (2nd)'

expand these ideas     |    start again     |     specify just one area for these texts


81 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Logic doesn't have a metaphysical basis, but nor can logic give rise to the metaphysics [Rumfitt]
2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
3. Truth / A. Truth Problems / 1. Truth
The idea that there are unrecognised truths is basic to our concept of truth [Rumfitt]
3. Truth / B. Truthmakers / 7. Making Modal Truths
'True at a possibility' means necessarily true if what is said had obtained [Rumfitt]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
'Absolute necessity' would have to rest on S5 [Rumfitt]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'ran R' indicates the 'range' of objects being related to [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
'F(x)' is the unique value which F assumes for a value of x [Enderton]
'dom R' indicates the 'domain' of objects having a relation [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence is a relation that can extended into further statements [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Normal deduction presupposes the Cut Law [Rumfitt]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals do not stand in a determinate order relation to zero [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Cantor and Dedekind aimed to give analysis a foundation in set theory (rather than geometry) [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
An object that is not clearly red or orange can still be red-or-orange, which sweeps up problem cases [Rumfitt]
The extension of a colour is decided by a concept's place in a network of contraries [Rumfitt]
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical modalities respect the actual identities of things [Rumfitt]
10. Modality / A. Necessity / 6. Logical Necessity
S5 is the logic of logical necessity [Rumfitt]
10. Modality / B. Possibility / 1. Possibility
Since possibilities are properties of the world, calling 'red' the determination of a determinable seems right [Rumfitt]
If two possibilities can't share a determiner, they are incompatible [Rumfitt]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possibilities are like possible worlds, but not fully determinate or complete [Rumfitt]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Medieval logicians said understanding A also involved understanding not-A [Rumfitt]
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In English 'evidence' is a mass term, qualified by 'little' and 'more' [Rumfitt]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We understand conditionals, but disagree over their truth-conditions [Rumfitt]
19. Language / F. Communication / 3. Denial
The truth grounds for 'not A' are the possibilities incompatible with truth grounds for A [Rumfitt]