Combining Texts

All the ideas for 'The Boundary Stones of Thought', 'Freedom of the Will and concept of a person' and 'Intermediate Logic'

expand these ideas     |    start again     |     specify just one area for these texts


116 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Logic doesn't have a metaphysical basis, but nor can logic give rise to the metaphysics [Rumfitt]
3. Truth / A. Truth Problems / 1. Truth
The idea that there are unrecognised truths is basic to our concept of truth [Rumfitt]
3. Truth / B. Truthmakers / 7. Making Modal Truths
'True at a possibility' means necessarily true if what is said had obtained [Rumfitt]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
'Absolute necessity' would have to rest on S5 [Rumfitt]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence is a relation that can extended into further statements [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
Normal deduction presupposes the Cut Law [Rumfitt]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals do not stand in a determinate order relation to zero [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Cantor and Dedekind aimed to give analysis a foundation in set theory (rather than geometry) [Rumfitt]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
An object that is not clearly red or orange can still be red-or-orange, which sweeps up problem cases [Rumfitt]
The extension of a colour is decided by a concept's place in a network of contraries [Rumfitt]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical modalities respect the actual identities of things [Rumfitt]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
S5 is the logic of logical necessity [Rumfitt]
10. Modality / B. Possibility / 1. Possibility
Since possibilities are properties of the world, calling 'red' the determination of a determinable seems right [Rumfitt]
If two possibilities can't share a determiner, they are incompatible [Rumfitt]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possibilities are like possible worlds, but not fully determinate or complete [Rumfitt]
11. Knowledge Aims / A. Knowledge / 2. Understanding
Medieval logicians said understanding A also involved understanding not-A [Rumfitt]
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In English 'evidence' is a mass term, qualified by 'little' and 'more' [Rumfitt]
16. Persons / B. Nature of the Self / 6. Self as Higher Awareness
Persons are distinguished by a capacity for second-order desires [Frankfurt]
A person essentially has second-order volitions, and not just second-order desires [Frankfurt]
16. Persons / F. Free Will / 1. Nature of Free Will
Free will is the capacity to choose what sort of will you have [Frankfurt]
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We understand conditionals, but disagree over their truth-conditions [Rumfitt]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
19. Language / F. Communication / 3. Denial
The truth grounds for 'not A' are the possibilities incompatible with truth grounds for A [Rumfitt]
20. Action / B. Preliminaries of Action / 2. Willed Action / a. Will to Act
The will is the effective desire which actually leads to an action [Frankfurt]
20. Action / B. Preliminaries of Action / 2. Willed Action / c. Agent causation
Freedom of action needs the agent to identify with their reason for acting [Frankfurt, by Wilson/Schpall]
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / g. Moral responsibility
A 'wanton' is not a person, because they lack second-order volitions [Frankfurt]
A person may be morally responsible without free will [Frankfurt]