Combining Texts

All the ideas for 'Critique of Judgement I: Aesthetic', 'Intro to Gdel's Theorems' and 'Plural Quantification Exposed'

expand these ideas     |    start again     |     specify just one area for these texts


62 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
A 'partial function' maps only some elements to another set [Smith,P]
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
5. Theory of Logic / K. Features of Logics / 7. Decidability
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
Robinson Arithmetic (Q) is not negation complete [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
21. Aesthetics / A. Aesthetic Experience / 1. Aesthetics
Kant gave form and status to aesthetics, and Hegel gave it content [Kant, by Scruton]
21. Aesthetics / A. Aesthetic Experience / 2. Aesthetic Attitude
The aesthetic attitude is a matter of disinterestedness [Kant, by Wollheim]
Only rational beings can experience beauty [Kant, by Scruton]
21. Aesthetics / A. Aesthetic Experience / 3. Taste
With respect to the senses, taste is an entirely personal matter [Kant]
When we judge beauty, it isn't just personal; we judge on behalf of everybody [Kant]
Saying everyone has their own taste destroys the very idea of taste [Kant]
21. Aesthetics / A. Aesthetic Experience / 4. Beauty
The beautiful is not conceptualised as moral, but it symbolises or resembles goodness [Kant, by Murdoch]
Kant saw beauty as a sort of disinterested pleasure, which has become separate from the good [Kant, by Taylor,C]
Beauty is only judged in pure contemplation, and not with something else at stake [Kant]
21. Aesthetics / A. Aesthetic Experience / 6. The Sublime
The mathematical sublime is immeasurable greatness; the dynamical sublime is overpowering [Kant, by Pinkard]
The sublime is a moral experience [Kant, by Gardner]
21. Aesthetics / C. Artistic Issues / 5. Objectivism in Art
Aesthetic values are not objectively valid, but we must treat them as if they are [Kant, by Scruton]
The judgement of beauty is not cognitive, but relates, via imagination, to pleasurable feelings [Kant]