Combining Texts

All the ideas for 'Wiener Logik', 'Philosophy of Logic' and 'Beginning Logic'

expand these ideas     |    start again     |     specify just one area for these texts


80 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
If you say that a contradiction is true, you change the meaning of 'not', and so change the subject [Quine]
2. Reason / D. Definition / 2. Aims of Definition
A simplification which is complete constitutes a definition [Kant]
3. Truth / F. Semantic Truth / 2. Semantic Truth
Talk of 'truth' when sentences are mentioned; it reminds us that reality is the point of sentences [Quine]
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth is redundant for single sentences; we do better to simply speak the sentence [Quine]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
The sign |- may be read as 'therefore' [Lemmon]
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
We write the 'negation' of P (not-P) as ¬ [Lemmon]
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
DN: Given A, we may derive ¬¬A [Lemmon]
A: we may assume any proposition at any stage [Lemmon]
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
∧I: Given A and B, we may derive A∧B [Lemmon]
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
MPP: Given A and A→B, we may derive B [Lemmon]
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
We can eliminate 'or' from our basic theory, by paraphrasing 'p or q' as 'not(not-p and not-q)' [Quine]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
My logical grammar has sentences by predication, then negation, conjunction, and existential quantification [Quine]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic gives us the necessary rules which show us how we ought to think [Kant]
Maybe logical truth reflects reality, but in different ways in different languages [Quine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Quine rejects second-order logic, saying that predicates refer to multiple objects [Quine, by Hodes]
Quantifying over predicates is treating them as names of entities [Quine]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle has three different definitions [Quine]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Quantification theory can still be proved complete if we add identity [Quine]
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
Names are not essential, because naming can be turned into predication [Quine]
5. Theory of Logic / G. Quantification / 1. Quantification
Universal quantification is widespread, but it is definable in terms of existential quantification [Quine]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
You can't base quantification on substituting names for variables, if the irrationals cannot all be named [Quine]
Some quantifications could be false substitutionally and true objectually, because of nameless objects [Quine]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Putting a predicate letter in a quantifier is to make it the name of an entity [Quine]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A sentence is logically true if all sentences with that grammatical structure are true [Quine]
8. Modes of Existence / B. Properties / 12. Denial of Properties
Predicates are not names; predicates are the other parties to predication [Quine]
9. Objects / A. Existence of Objects / 1. Physical Objects
A physical object is the four-dimensional material content of a portion of space-time [Quine]
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
Four-d objects helps predication of what no longer exists, and quantification over items from different times [Quine]
10. Modality / B. Possibility / 8. Conditionals / b. Types of conditional
Some conditionals can be explained just by negation and conjunction: not(p and not-q) [Quine]
13. Knowledge Criteria / A. Justification Problems / 3. Internal or External / b. Pro-externalism
If we knew what we know, we would be astonished [Kant]
19. Language / A. Nature of Meaning / 8. Synonymy
Single words are strongly synonymous if their interchange preserves truth [Quine]
19. Language / D. Propositions / 6. Propositions Critique
It makes no sense to say that two sentences express the same proposition [Quine]
There is no rule for separating the information from other features of sentences [Quine]
We can abandon propositions, and just talk of sentences and equivalence [Quine]
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
A good way of explaining an expression is saying what conditions make its contexts true [Quine]