Combining Texts

All the ideas for 'Logical Consequence', 'A Tour through Mathematical Logic' and 'Nietzsche: a philosophical biography'

expand these ideas     |    start again     |     specify just one area for these texts


28 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / d. Nineteenth century philosophy
Hegel, Fichte and Schelling wanted to know Kant's thing-in-itself, as ego, or nature, or spirit [Safranski]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'Equivocation' is when terms do not mean the same thing in premises and conclusion [Beall/Restall]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Formal logic is invariant under permutations, or devoid of content, or gives the norms for thought [Beall/Restall]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence needs either proofs, or absence of counterexamples [Beall/Restall]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is either necessary truth preservation, or preservation based on interpretation [Beall/Restall]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
A step is a 'material consequence' if we need contents as well as form [Beall/Restall]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A 'logical truth' (or 'tautology', or 'theorem') follows from empty premises [Beall/Restall]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
Models are mathematical structures which interpret the non-logical primitives [Beall/Restall]
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Hilbert proofs have simple rules and complex axioms, and natural deduction is the opposite [Beall/Restall]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]