Combining Texts

All the ideas for 'On the Philosophy of Logic', 'Intro to Non-Classical Logic (1st ed)' and 'Model Theory'

expand these ideas     |    start again     |     specify just one area for these texts


45 ideas

2. Reason / A. Nature of Reason / 1. On Reason
We reach 'reflective equilibrium' when intuitions and theory completely align [Fisher]
2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic says excluded middle and non-contradition are not tautologies [Fisher]
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
Fuzzy logic has many truth values, ranging in fractions from 0 to 1 [Fisher]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
<a,b&62; is a set whose members occur in the order shown [Priest,G]
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
Φ indicates the empty set, which has no members [Priest,G]
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
X⊆Y means set X is a 'subset' of set Y [Priest,G]
X = Y means the set X equals the set Y [Priest,G]
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
A 'member' of a set is one of the objects in the set [Priest,G]
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
A 'set' is a collection of objects [Priest,G]
The 'empty set' or 'null set' has no members [Priest,G]
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
A 'proper subset' is smaller than the containing set [Priest,G]
A 'singleton' is a set with only one member [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is: excluded middle, non-contradiction, contradictions imply all, disjunctive syllogism [Fisher]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Logic formalizes how we should reason, but it shouldn't determine whether we are realists [Fisher]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
Models in model theory are structures, not sets of descriptions [Hodges,W]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
We could make our intuitions about heaps precise with a million-valued logic [Fisher]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vagueness can involve components (like baldness), or not (like boredom) [Fisher]
10. Modality / B. Possibility / 1. Possibility
We can't explain 'possibility' in terms of 'possible' worlds [Fisher]
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
If all truths are implied by a falsehood, then not-p might imply both q and not-q [Fisher]
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
In relevance logic, conditionals help information to flow from antecedent to consequent [Fisher]