Combining Texts

All the ideas for 'Reason, Emotions and Good Life', 'Varieties of Things' and 'Foundations without Foundationalism'

expand these ideas     |    start again     |     specify just one area for these texts


83 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
Philosophy tries to explain how the actual is possible, given that it seems impossible [Macdonald,C]
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Did it for the sake of x' doesn't involve a sake, so how can ontological commitments be inferred? [Macdonald,C]
2. Reason / F. Fallacies / 5. Fallacy of Composition
Don't assume that a thing has all the properties of its parts [Macdonald,C]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
First-order logic was an afterthought in the development of modern logic [Shapiro]
The notion of finitude is actually built into first-order languages [Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
Semantic consequence is ineffective in second-order logic [Shapiro]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
Categoricity can't be reached in a first-order language [Shapiro]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
Compactness is derived from soundness and completeness [Shapiro]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
7. Existence / C. Structure of Existence / 2. Reduction
Reduce by bridge laws (plus property identities?), by elimination, or by reducing talk [Macdonald,C]
8. Modes of Existence / A. Relations / 2. Internal Relations
Relational properties are clearly not essential to substances [Macdonald,C]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
Being taller is an external relation, but properties and substances have internal relations [Macdonald,C]
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
8. Modes of Existence / B. Properties / 12. Denial of Properties
Does the knowledge of each property require an infinity of accompanying knowledge? [Macdonald,C]
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Tropes are abstract (two can occupy the same place), but not universals (they have locations) [Macdonald,C]
Properties are sets of exactly resembling property-particulars [Macdonald,C]
Tropes are abstract particulars, not concrete particulars, so the theory is not nominalist [Macdonald,C]
8. Modes of Existence / B. Properties / 13. Tropes / b. Critique of tropes
How do a group of resembling tropes all resemble one another in the same way? [Macdonald,C]
Trope Nominalism is the only nominalism to introduce new entities, inviting Ockham's Razor [Macdonald,C]
8. Modes of Existence / D. Universals / 2. Need for Universals
Numerical sameness is explained by theories of identity, but what explains qualitative identity? [Macdonald,C]
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
How can universals connect instances, if they are nothing like them? [Macdonald,C]
8. Modes of Existence / E. Nominalism / 1. Nominalism / c. Nominalism about abstracta
Real Nominalism is only committed to concrete particulars, word-tokens, and (possibly) sets [Macdonald,C]
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
Resemblance Nominalism cannot explain either new resemblances, or absence of resemblances [Macdonald,C]
9. Objects / A. Existence of Objects / 5. Individuation / c. Individuation by location
A 'thing' cannot be in two places at once, and two things cannot be in the same place at once [Macdonald,C]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
We 'individuate' kinds of object, and 'identify' particular specimens [Macdonald,C]
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
Unlike bundles of properties, substances have an intrinsic unity [Macdonald,C]
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
The bundle theory of substance implies the identity of indiscernibles [Macdonald,C]
9. Objects / B. Unity of Objects / 2. Substance / e. Substance critique
A phenomenalist cannot distinguish substance from attribute, so must accept the bundle view [Macdonald,C]
When we ascribe a property to a substance, the bundle theory will make that a tautology [Macdonald,C]
Substances persist through change, but the bundle theory says they can't [Macdonald,C]
A substance might be a sequence of bundles, rather than a single bundle [Macdonald,C]
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
A statue and its matter have different persistence conditions, so they are not identical [Macdonald,C]
9. Objects / C. Structure of Objects / 7. Substratum
A substance is either a bundle of properties, or a bare substratum, or an essence [Macdonald,C]
Each substance contains a non-property, which is its substratum or bare particular [Macdonald,C]
The substratum theory explains the unity of substances, and their survival through change [Macdonald,C]
A substratum has the quality of being bare, and they are useless because indiscernible [Macdonald,C]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
At different times Leibniz articulated three different versions of his so-called Law [Macdonald,C]
The Identity of Indiscernibles is false, because it is not necessarily true [Macdonald,C]
16. Persons / D. Continuity of the Self / 2. Mental Continuity / b. Self as mental continuity
In continuity, what matters is not just the beginning and end states, but the process itself [Macdonald,C]
20. Action / C. Motives for Action / 3. Acting on Reason / a. Practical reason
Either all action is rational, or reason dominates, or reason is only concerned with means [Cottingham]