Combining Texts

All the ideas for 'Set Theory', 'Identity and Existence in Logic' and 'A Completeness Theorem in Modal Logic'

expand these ideas     |    start again     |     specify just one area for these texts


24 ideas

4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
Propositional modal logic has been proved to be complete [Kripke, by Feferman/Feferman]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / a. Systems of modal logic
With possible worlds, S4 and S5 are sound and complete, but S1-S3 are not even sound [Kripke, by Rossberg]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The variable domain approach to quantified modal logic invalidates the Barcan Formula [Kripke, by Simchen]
The Barcan formulas fail in models with varying domains [Kripke, by Williamson]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logics has terms that do not designate real things, and even empty domains [Anderson,CA]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Basic variables in second-order logic are taken to range over subsets of the individuals [Anderson,CA]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Stop calling ∃ the 'existential' quantifier, read it as 'there is...', and range over all entities [Anderson,CA]
7. Existence / A. Nature of Existence / 2. Types of Existence
Do mathematicians use 'existence' differently when they say some entity exists? [Anderson,CA]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We can distinguish 'ontological' from 'existential' commitment, for different kinds of being [Anderson,CA]
9. Objects / A. Existence of Objects / 4. Impossible objects
's is non-existent' cannot be said if 's' does not designate [Anderson,CA]
We cannot pick out a thing and deny its existence, but we can say a concept doesn't correspond [Anderson,CA]
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
Individuation was a problem for medievals, then Leibniz, then Frege, then Wittgenstein (somewhat) [Anderson,CA]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The notion of 'property' is unclear for a logical version of the Identity of Indiscernibles [Anderson,CA]