Combining Texts

All the ideas for 'Set Theory', 'Implications' and 'Mathematics is Megethology'

expand these ideas     |    start again     |     specify just one area for these texts


24 ideas

1. Philosophy / H. Continental Philosophy / 6. Deconstruction
Deconstructing philosophy gives the history of concepts, and the repressions behind them [Derrida]
The movement of 'différance' is the root of all the oppositional concepts in our language [Derrida]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematics reduces to set theory, which reduces, with some mereology, to the singleton function [Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We can accept the null set, but not a null class, a class lacking members [Lewis]
The null set plays the role of last resort, for class abstracts and for existence [Lewis]
The null set is not a little speck of sheer nothingness, a black hole in Reality [Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What on earth is the relationship between a singleton and an element? [Lewis]
Are all singletons exact intrinsic duplicates? [Lewis]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Megethology is the result of adding plural quantification to mereology [Lewis]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
We can use mereology to simulate quantification over relations [Lewis]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mathematics is generalisations about singleton functions [Lewis]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
We don't need 'abstract structures' to have structural truths about successor functions [Lewis]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
I say that absolutely any things can have a mereological fusion [Lewis]