Combining Texts

All the ideas for 'Replies on 'Limits of Abstraction'', 'Why the Universe Exists' and 'Understanding the Infinite'

expand these ideas     |    start again     |     specify just one area for these texts


88 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Concern for rigour can get in the way of understanding phenomena [Fine,K]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
There is no stage at which we can take all the sets to have been generated [Fine,K]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
We might combine the axioms of set theory with the axioms of mereology [Fine,K]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Assigning an entity to each predicate in semantics is largely a technical convenience [Fine,K]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
A generative conception of abstracts proposes stages, based on concepts of previous objects [Fine,K]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction-theoretic imperialists think Fregean abstracts can represent every mathematical object [Fine,K]
We can combine ZF sets with abstracts as urelements [Fine,K]
We can create objects from conditions, rather than from concepts [Fine,K]
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Gravity is unusual, in that it always attracts and never repels [New Sci.]
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
In the Big Bang general relativity fails, because gravity is too powerful [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Quantum electrodynamics incorporates special relativity and quantum mechanics [New Sci.]
Photons have zero rest mass, so virtual photons have infinite range [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In the standard model all the fundamental force fields merge at extremely high energies [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons move fast, so are subject to special relativity [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force is repulsive at short distances, strong at medium, and fades at long [New Sci.]
Gluons, the particles carrying the strong force, interact because of their colour charge [New Sci.]
The strong force binds quarks tight, and the nucleus more weakly [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / b. Quarks
Quarks in threes can build hadrons with spin ½ or with spin 3/2 [New Sci.]
Classifying hadrons revealed two symmetry patterns, produced by three basic elements [New Sci.]
Three different colours of quark (as in the proton) can cancel out to give no colour [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The four fundamental forces (gravity, electromagnetism, weak and strong) are the effects of particles [New Sci.]
The weak force explains beta decay, and the change of type by quarks and leptons [New Sci.]
Three particles enable the weak force: W+ and W- are charged, and Z° is not [New Sci.]
The weak force particles are heavy, so the force has a short range [New Sci.]
Why do the charges of the very different proton and electron perfectly match up? [New Sci.]
The Standard Model cannot explain dark energy, survival of matter, gravity, or force strength [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Spin is a built-in ration of angular momentum [New Sci.]
Quarks have red, green or blue colour charge (akin to electric charge) [New Sci.]
Fermions, with spin ½, are antisocial, and cannot share quantum states [New Sci.]
Spin is akin to rotation, and is easily measured in a magnetic field [New Sci.]
Particles are spread out, with wave-like properties, and higher energy shortens the wavelength [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
The mass of protons and neutrinos is mostly binding energy, not the quarks [New Sci.]
Gravitional mass turns out to be the same as inertial mass [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Neutrons are slightly heavier than protons, and decay into them by emitting an electron [New Sci.]
Top, bottom, charm and strange quarks quickly decay into up and down [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos were proposed as the missing energy in neutron beta decay [New Sci.]
Only neutrinos spin anticlockwise [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / g. Anti-matter
Standard antineutrinos have opposite spin and opposite lepton number [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The symmetry of unified electromagnetic and weak forces was broken by the Higgs field [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
String theory is now part of 11-dimensional M-Theory, involving p-branes [New Sci.]
Supersymmetric string theory can be expressed using loop quantum gravity [New Sci.]
String theory might be tested by colliding strings to make bigger 'stringballs' [New Sci.]
String theory offers a quantum theory of gravity, by describing the graviton [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
Only supersymmetry offers to incorporate gravity into the scheme [New Sci.]
Supersymmetry has extra heavy bosons and heavy fermions [New Sci.]
Supersymmetry says particles and superpartners were unities, but then split [New Sci.]
The evidence for supersymmetry keeps failing to appear [New Sci.]
27. Natural Reality / C. Space / 4. Substantival Space
The Higgs field means even low energy space is not empty [New Sci.]
27. Natural Reality / E. Cosmology / 8. Dark Matter
Dark matter must have mass, to produce gravity, and no electric charge, to not reflect light [New Sci.]