Combining Texts

All the ideas for 'On Formally Undecidable Propositions', 'Ontological Categories' and 'Reply to 'Rorarius' 2nd ed'

expand these ideas     |    start again     |     specify just one area for these texts


33 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
We negate predicates but do not negate names [Westerhoff]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
7. Existence / E. Categories / 1. Categories
How far down before we are too specialised to have a category? [Westerhoff]
Maybe objects in the same category have the same criteria of identity [Westerhoff]
Categories are base-sets which are used to construct states of affairs [Westerhoff]
Categories are held to explain why some substitutions give falsehood, and others meaninglessness [Westerhoff]
Categories systematize our intuitions about generality, substitutability, and identity [Westerhoff]
Categories as generalities don't give a criterion for a low-level cut-off point [Westerhoff]
Categories can be ordered by both containment and generality [Westerhoff]
7. Existence / E. Categories / 2. Categorisation
The aim is that everything should belong in some ontological category or other [Westerhoff]
7. Existence / E. Categories / 3. Proposed Categories
All systems have properties and relations, and most have individuals, abstracta, sets and events [Westerhoff]
7. Existence / E. Categories / 5. Category Anti-Realism
Ontological categories are like formal axioms, not unique and with necessary membership [Westerhoff]
Categories merely systematise, and are not intrinsic to objects [Westerhoff]
A thing's ontological category depends on what else exists, so it is contingent [Westerhoff]
9. Objects / D. Essence of Objects / 5. Essence as Kind
Essential kinds may be too specific to provide ontological categories [Westerhoff]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
27. Natural Reality / D. Time / 1. Nature of Time / b. Relative time
Space and time are the order of all possibilities, and don't just relate to what is actual [Leibniz]