Combining Texts

All the ideas for 'Analyzing Modality', 'Philosophical Logic' and 'Philosophy of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


75 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions should be replaceable by primitives, and should not be creative [Brown,JR]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
It is still unsettled whether standard intuitionist logic is complete [Burgess]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory says that natural numbers are an actual infinity (to accommodate their powerset) [Brown,JR]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Nowadays conditions are only defined on existing sets [Brown,JR]
Naïve set theory assumed that there is a set for every condition [Brown,JR]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The 'iterative' view says sets start with the empty set and build up [Brown,JR]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
A flock of birds is not a set, because a set cannot go anywhere [Brown,JR]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
If a proposition is false, then its negation is true [Brown,JR]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
'All horses' either picks out the horses, or the things which are horses [Jubien]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
We can build one expanding sequence, instead of a chain of deductions [Burgess]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
Models leave out meaning, and just focus on truth values [Burgess]
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are either self-evident, or stipulations, or fallible attempts [Brown,JR]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox finds a contradiction in the naming of huge numbers [Brown,JR]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is the only place where we are sure we are right [Brown,JR]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
'There are two apples' can be expressed logically, with no mention of numbers [Brown,JR]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / n. Pi
π is a 'transcendental' number, because it is not the solution of an equation [Brown,JR]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Mathematics represents the world through structurally similar models. [Brown,JR]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
There is no limit to how many ways something can be proved in mathematics [Brown,JR]
Computers played an essential role in proving the four-colour theorem of maps [Brown,JR]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set theory may represent all of mathematics, without actually being mathematics [Brown,JR]
When graphs are defined set-theoretically, that won't cover unlabelled graphs [Brown,JR]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
To see a structure in something, we must already have the idea of the structure [Brown,JR]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Sets seem basic to mathematics, but they don't suit structuralism [Brown,JR]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
The irrationality of root-2 was achieved by intellect, not experience [Brown,JR]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Numbers are not abstracted from particulars, because each number is a particular [Brown,JR]
There is an infinity of mathematical objects, so they can't be physical [Brown,JR]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Empiricists base numbers on objects, Platonists base them on properties [Brown,JR]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The most brilliant formalist was Hilbert [Brown,JR]
For nomalists there are no numbers, only numerals [Brown,JR]
Does some mathematics depend entirely on notation? [Brown,JR]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
There are no constructions for many highly desirable results in mathematics [Brown,JR]
Constructivists say p has no value, if the value depends on Goldbach's Conjecture [Brown,JR]
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
David's 'Napoleon' is about something concrete and something abstract [Brown,JR]
9. Objects / A. Existence of Objects / 1. Physical Objects
Being a physical object is our most fundamental category [Jubien]
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Haecceities implausibly have no qualities [Jubien]
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
10. Modality / A. Necessity / 11. Denial of Necessity
De re necessity is just de dicto necessity about object-essences [Jubien]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Modal propositions transcend the concrete, but not the actual [Jubien]
Your properties, not some other world, decide your possibilities [Jubien]
Modal truths are facts about parts of this world, not about remote maximal entities [Jubien]
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
We have no idea how many 'possible worlds' there might be [Jubien]
If other worlds exist, then they are scattered parts of the actual world [Jubien]
If all possible worlds just happened to include stars, their existence would be necessary [Jubien]
If there are no other possible worlds, do we then exist necessarily? [Jubien]
Possible worlds just give parallel contingencies, with no explanation at all of necessity [Jubien]
Worlds don't explain necessity; we use necessity to decide on possible worlds [Jubien]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
We mustn't confuse a similar person with the same person [Jubien]
18. Thought / E. Abstraction / 1. Abstract Thought
'Abstract' nowadays means outside space and time, not concrete, not physical [Brown,JR]
The older sense of 'abstract' is where 'redness' or 'group' is abstracted from particulars [Brown,JR]
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
A term can have not only a sense and a reference, but also a 'computational role' [Brown,JR]
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Given atomism at one end, and a finite universe at the other, there are no physical infinities [Brown,JR]