Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'Maths as a Science of Patterns' and 'Axiomatic Theories of Truth (2005 ver)'

expand these ideas     |    start again     |     specify just one area for these texts


19 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
Truth definitions don't produce a good theory, because they go beyond your current language [Halbach]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
In semantic theories of truth, the predicate is in an object-language, and the definition in a metalanguage [Halbach]
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Should axiomatic truth be 'conservative' - not proving anything apart from implications of the axioms? [Halbach]
If truth is defined it can be eliminated, whereas axiomatic truth has various commitments [Halbach]
Axiomatic theories of truth need a weak logical framework, and not a strong metatheory [Halbach]
Instead of a truth definition, add a primitive truth predicate, and axioms for how it works [Halbach]
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Deflationists say truth merely serves to express infinite conjunctions [Halbach]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
To prove the consistency of set theory, we must go beyond set theory [Halbach]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
We can use truth instead of ontologically loaded second-order comprehension assumptions about properties [Halbach]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Instead of saying x has a property, we can say a formula is true of x - as long as we have 'true' [Halbach]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical realism says that maths exists, is largely true, and is independent of proofs [Resnik]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
Sets are positions in patterns [Resnik]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism must explain why a triangle is a whole, and not a random set of points [Resnik]
There are too many mathematical objects for them all to be mental or physical [Resnik]
Maths is pattern recognition and representation, and its truth and proofs are based on these [Resnik]
Congruence is the strongest relationship of patterns, equivalence comes next, and mutual occurrence is the weakest [Resnik]
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]