Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Ontology' and 'Infinity: Quest to Think the Unthinkable'

expand these ideas     |    start again     |     specify just one area for these texts


48 ideas

4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
The modal logic of C.I.Lewis was only interpreted by Kripke and Hintikka in the 1960s [Jacquette]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic describes inferences between sentences expressing possible properties of objects [Jacquette]
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Logic is not just about signs, because it relates to states of affairs, objects, properties and truth-values [Jacquette]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
On Russell's analysis, the sentence "The winged horse has wings" comes out as false [Jacquette]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Can a Barber shave all and only those persons who do not shave themselves? [Jacquette]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
An ordinal number is defined by the set that comes before it [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
To grasp being, we must say why something exists, and why there is one world [Jacquette]
7. Existence / A. Nature of Existence / 5. Reason for Existence
Being is maximal consistency [Jacquette]
Existence is completeness and consistency [Jacquette]
7. Existence / D. Theories of Reality / 1. Ontologies
Ontology is the same as the conceptual foundations of logic [Jacquette]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
Ontology must include the minimum requirements for our semantics [Jacquette]
7. Existence / E. Categories / 3. Proposed Categories
Logic is based either on separate objects and properties, or objects as combinations of properties [Jacquette]
Reduce states-of-affairs to object-property combinations, and possible worlds to states-of-affairs [Jacquette]
8. Modes of Existence / B. Properties / 11. Properties as Sets
If classes can't be eliminated, and they are property combinations, then properties (universals) can't be either [Jacquette]
9. Objects / A. Existence of Objects / 1. Physical Objects
An object is a predication subject, distinguished by a distinctive combination of properties [Jacquette]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Numbers, sets and propositions are abstract particulars; properties, qualities and relations are universals [Jacquette]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
The actual world is a consistent combination of states, made of consistent property combinations [Jacquette]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
The actual world is a maximally consistent combination of actual states of affairs [Jacquette]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
Do proposition-structures not associated with the actual world deserve to be called worlds? [Jacquette]
We must experience the 'actual' world, which is defined by maximally consistent propositions [Jacquette]
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
If qualia supervene on intentional states, then intentional states are explanatorily fundamental [Jacquette]
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Reduction of intentionality involving nonexistent objects is impossible, as reduction must be to what is actual [Jacquette]
19. Language / D. Propositions / 1. Propositions
The extreme views on propositions are Frege's Platonism and Quine's extreme nominalism [Jacquette]