Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'First-Order Modal Logic' and 'Concepts'

expand these ideas     |    start again     |     specify just one area for these texts


73 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Naturalistic philosophers oppose analysis, preferring explanation to a priori intuition [Margolis/Laurence]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
12. Knowledge Sources / D. Empiricism / 2. Associationism
Modern empiricism tends to emphasise psychological connections, not semantic relations [Margolis/Laurence]
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Body-type seems to affect a mind's cognition and conceptual scheme [Margolis/Laurence]
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Language of thought has subject/predicate form and includes logical devices [Margolis/Laurence]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Concepts are either representations, or abilities, or Fregean senses [Margolis/Laurence]
18. Thought / D. Concepts / 3. Ontology of Concepts / a. Concepts as representations
A computer may have propositional attitudes without representations [Margolis/Laurence]
Do mental representations just lead to a vicious regress of explanations [Margolis/Laurence]
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Maybe the concept CAT is just the ability to discriminate and infer about cats [Margolis/Laurence]
The abilities view cannot explain the productivity of thought, or mental processes [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Concept-structure explains typicality, categories, development, reference and composition [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
Classically, concepts give necessary and sufficient conditions for falling under them [Margolis/Laurence]
Typicality challenges the classical view; we see better fruit-prototypes in apples than in plums [Margolis/Laurence]
The classical theory explains acquisition, categorization and reference [Margolis/Laurence]
It may be that our concepts (such as 'knowledge') have no definitional structure [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
The prototype theory is probabilistic, picking something out if it has sufficient of the properties [Margolis/Laurence]
Prototype theory categorises by computing the number of shared constituents [Margolis/Laurence]
People don't just categorise by apparent similarities [Margolis/Laurence]
Complex concepts have emergent properties not in the ingredient prototypes [Margolis/Laurence]
Many complex concepts obviously have no prototype [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
The theory theory of concepts says they are parts of theories, defined by their roles [Margolis/Laurence]
The theory theory is holistic, so how can people have identical concepts? [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / g. Conceptual atomism
Maybe concepts have no structure, and determined by relations to the world, not to other concepts [Margolis/Laurence]
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
People can formulate new concepts which are only named later [Margolis/Laurence]