Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'The Barcan Formula and Metaphysics' and 'Which Logic is the Right Logic?'

expand these ideas     |    start again     |     specify just one area for these texts


26 ideas

4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan Formulas express how to combine modal operators with classical quantifiers [Simchen]
The Barcan Formulas are orthodox, but clash with the attractive Actualist view [Simchen]
BF implies that if W possibly had a child, then something is possibly W's child [Simchen]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
We have no argument to show a statement is absolutely undecidable [Koellner]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Serious Actualism says there are no facts at all about something which doesn't exist [Simchen]