Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Identity and Necessity' and 'Set Theory'

expand these ideas     |    start again     |     specify just one area for these texts


25 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
We may fix the reference of 'Cicero' by a description, but thereafter the name is rigid [Kripke]
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
The function of names is simply to refer [Kripke]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
10. Modality / D. Knowledge of Modality / 3. A Posteriori Necessary
It is necessary that this table is not made of ice, but we don't know it a priori [Kripke]
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
A 'rigid designator' designates the same object in all possible worlds [Kripke]
We cannot say that Nixon might have been a different man from the one he actually was [Kripke]
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Modal statements about this table never refer to counterparts; that confuses epistemology and metaphysics [Kripke]
17. Mind and Body / A. Mind-Body Dualism / 7. Zombies
Identity theorists must deny that pains can be imagined without brain states [Kripke]
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / e. Modal argument
Pain, unlike heat, is picked out by an essential property [Kripke]