Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'Review of Bob Hale's 'Abstract Objects'' and 'Truth by Convention'

expand these ideas     |    start again     |     specify just one area for these texts


18 ideas

1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
We can't presume that all interesting concepts can be analysed [Williamson]
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
If if time is money then if time is not money then time is money then if if if time is not money... [Quine]
2. Reason / D. Definition / 7. Contextual Definition
Definition by words is determinate but relative; fixing contexts could make it absolute [Quine]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Quine quickly dismisses If-thenism [Quine, by Musgrave]
5. Theory of Logic / C. Ontology of Logic / 4. Logic by Convention
Logic needs general conventions, but that needs logic to apply them to individual cases [Quine, by Rey]
Claims that logic and mathematics are conventional are either empty, uninteresting, or false [Quine]
Logic isn't conventional, because logic is needed to infer logic from conventions [Quine]
If a convention cannot be communicated until after its adoption, what is its role? [Quine]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If analytic geometry identifies figures with arithmetical relations, logicism can include geometry [Quine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
There are four different possible conventional accounts of geometry [Quine]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Platonism claims that some true assertions have singular terms denoting abstractions, so abstractions exist [Williamson]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
If mathematics follows from definitions, then it is conventional, and part of logic [Quine]