Combining Texts

All the ideas for 'Particulars in Particular Clothing', 'Philosophy of Mathematics' and 'Beginning Logic'

expand these ideas     |    start again     |     specify just one area for these texts


102 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
The sign |- may be read as 'therefore' [Lemmon]
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
We write the 'negation' of P (not-P) as ¬ [Lemmon]
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
DN: Given A, we may derive ¬¬A [Lemmon]
∧I: Given A and B, we may derive A∧B [Lemmon]
MPP: Given A and A→B, we may derive B [Lemmon]
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
A: we may assume any proposition at any stage [Lemmon]
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
The completeness of first-order logic implies its compactness [Bostock]
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
The number of reals is the number of subsets of the natural numbers [Bostock]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
There are many criteria for the identity of numbers [Bostock]
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
Many crucial logicist definitions are in fact impredicative [Bostock]
If Hume's Principle is the whole story, that implies structuralism [Bostock]
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
The usual definitions of identity and of natural numbers are impredicative [Bostock]
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
Predicativism makes theories of huge cardinals impossible [Bostock]
If mathematics rests on science, predicativism may be the best approach [Bostock]
If we can only think of what we can describe, predicativism may be implied [Bostock]
The predicativity restriction makes a difference with the real numbers [Bostock]
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Internal relations combine some tropes into a nucleus, which bears the non-essential tropes [Simons, by Edwards]
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]