Combining Texts

All the ideas for 'Intro to G��del's Theorems', 'Introduction to Mathematical Philosophy' and 'Wang's Paradox'

expand these ideas     |    start again     |     specify just one area for these texts


99 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Socrates is human' expresses predication, and 'Socrates is a man' expresses identity [Russell]
2. Reason / D. Definition / 3. Types of Definition
A definition by 'extension' enumerates items, and one by 'intension' gives a defining property [Russell]
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
The sentence 'procrastination drinks quadruplicity' is meaningless, rather than false [Russell, by Orenstein]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
An argument 'satisfies' a function φx if φa is true [Russell]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
Choice is equivalent to the proposition that every class is well-ordered [Russell]
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
All the propositions of logic are completely general [Russell]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
In modern times, logic has become mathematical, and mathematics has become logical [Russell]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic can only assert hypothetical existence [Russell]
Logic is concerned with the real world just as truly as zoology [Russell]
Logic can be known a priori, without study of the actual world [Russell]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
A 'partial function' maps only some elements to another set [Smith,P]
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Asking 'Did Homer exist?' is employing an abbreviated description [Russell]
Russell admitted that even names could also be used as descriptions [Russell, by Bach]
Names are really descriptions, except for a few words like 'this' and 'that' [Russell]
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
The only genuine proper names are 'this' and 'that' [Russell]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
'I met a unicorn' is meaningful, and so is 'unicorn', but 'a unicorn' is not [Russell]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
Robinson Arithmetic (Q) is not negation complete [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence can only be asserted of something described, not of something named [Russell]
7. Existence / D. Theories of Reality / 7. Fictionalism
Classes are logical fictions, made from defining characteristics [Russell]
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
To say reality itself is vague is not properly intelligible [Dummett]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
If a relation is symmetrical and transitive, it has to be reflexive [Russell]
'Asymmetry' is incompatible with its converse; a is husband of b, so b can't be husband of a [Russell]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
9. Objects / D. Essence of Objects / 3. Individual Essences
The essence of individuality is beyond description, and hence irrelevant to science [Russell]
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Inferring q from p only needs p to be true, and 'not-p or q' to be true [Russell]
All forms of implication are expressible as truth-functions [Russell]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
If something is true in all possible worlds then it is logically necessary [Russell]
14. Science / B. Scientific Theories / 1. Scientific Theory
Mathematically expressed propositions are true of the world, but how to interpret them? [Russell]
19. Language / D. Propositions / 1. Propositions
Propositions are mainly verbal expressions of true or false, and perhaps also symbolic thoughts [Russell]