Combining Texts

All the ideas for 'Intro to G��del's Theorems', 'Paradoxes: Form and Predication' and 'Laws in Nature'

expand these ideas     |    start again     |     specify just one area for these texts


69 ideas

1. Philosophy / D. Nature of Philosophy / 6. Hopes for Philosophy
Science studies phenomena, but only metaphysics tells us what exists [Mumford]
2. Reason / A. Nature of Reason / 1. On Reason
Many forms of reasoning, such as extrapolation and analogy, are useful but deductively invalid [Mumford]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'partial function' maps only some elements to another set [Smith,P]
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Saying 'they can become a set' is a tautology, because reference to 'they' implies a collection [Cargile]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
Robinson Arithmetic (Q) is not negation complete [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
7. Existence / A. Nature of Existence / 1. Nature of Existence
For Humeans the world is a world primarily of events [Mumford]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Properties are just natural clusters of powers [Mumford]
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
A 'porridge' nominalist thinks we just divide reality in any way that suits us [Mumford]
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
If properties are clusters of powers, this can explain why properties resemble in degrees [Mumford]
9. Objects / D. Essence of Objects / 14. Knowledge of Essences
How can we show that a universally possessed property is an essential property? [Mumford]
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Singular causes, and identities, might be necessary without falling under a law [Mumford]
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
We can give up the counterfactual account if we take causal language at face value [Mumford]
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
It is only properties which are the source of necessity in the world [Mumford]
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
There are four candidates for the logical form of law statements [Mumford]
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
Pure regularities are rare, usually only found in idealized conditions [Mumford]
Would it count as a regularity if the only five As were also B? [Mumford]
Regularities are more likely with few instances, and guaranteed with no instances! [Mumford]
Regularity laws don't explain, because they have no governing role [Mumford]
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
If the best system describes a nomological system, the laws are in nature, not in the description [Mumford]
The best systems theory says regularities derive from laws, rather than constituting them [Mumford]
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
Laws of nature are necessary relations between universal properties, rather than about particulars [Mumford]
If laws can be uninstantiated, this favours the view of them as connecting universals [Mumford]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Laws of nature are just the possession of essential properties by natural kinds [Mumford]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
To distinguish accidental from essential properties, we must include possible members of kinds [Mumford]
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
The Central Dilemma is how to explain an internal or external view of laws which govern [Mumford]
You only need laws if you (erroneously) think the world is otherwise inert [Mumford]
There are no laws of nature in Aristotle; they became standard with Descartes and Newton [Mumford]