Combining Texts

All the ideas for 'poems', 'Concepts' and 'Philosophies of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


65 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Naturalistic philosophers oppose analysis, preferring explanation to a priori intuition [Margolis/Laurence]
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
12. Knowledge Sources / D. Empiricism / 2. Associationism
Modern empiricism tends to emphasise psychological connections, not semantic relations [Margolis/Laurence]
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Body-type seems to affect a mind's cognition and conceptual scheme [Margolis/Laurence]
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Language of thought has subject/predicate form and includes logical devices [Margolis/Laurence]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
Concepts are either representations, or abilities, or Fregean senses [Margolis/Laurence]
18. Thought / D. Concepts / 3. Ontology of Concepts / a. Concepts as representations
A computer may have propositional attitudes without representations [Margolis/Laurence]
Do mental representations just lead to a vicious regress of explanations [Margolis/Laurence]
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Maybe the concept CAT is just the ability to discriminate and infer about cats [Margolis/Laurence]
The abilities view cannot explain the productivity of thought, or mental processes [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Concept-structure explains typicality, categories, development, reference and composition [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
Classically, concepts give necessary and sufficient conditions for falling under them [Margolis/Laurence]
Typicality challenges the classical view; we see better fruit-prototypes in apples than in plums [Margolis/Laurence]
The classical theory explains acquisition, categorization and reference [Margolis/Laurence]
It may be that our concepts (such as 'knowledge') have no definitional structure [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
The prototype theory is probabilistic, picking something out if it has sufficient of the properties [Margolis/Laurence]
Prototype theory categorises by computing the number of shared constituents [Margolis/Laurence]
People don't just categorise by apparent similarities [Margolis/Laurence]
Complex concepts have emergent properties not in the ingredient prototypes [Margolis/Laurence]
Many complex concepts obviously have no prototype [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
The theory theory of concepts says they are parts of theories, defined by their roles [Margolis/Laurence]
The theory theory is holistic, so how can people have identical concepts? [Margolis/Laurence]
18. Thought / D. Concepts / 4. Structure of Concepts / g. Conceptual atomism
Maybe concepts have no structure, and determined by relations to the world, not to other concepts [Margolis/Laurence]
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
People can formulate new concepts which are only named later [Margolis/Laurence]
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / j. Ethics by convention
Nomos is king [Pindar]