Combining Texts

All the ideas for 'Laches', 'Intermediate Logic' and 'works'

expand these ideas     |    start again     |     specify just one area for these texts


116 ideas

1. Philosophy / A. Wisdom / 3. Wisdom Deflated
Don't assume that wisdom is the automatic consequence of old age [Plato]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
Truth is the basic notion in classical logic [Bostock]
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
Validity is a conclusion following for premises, even if there is no proof [Bostock]
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
If we are to express that there at least two things, we need identity [Bostock]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
The Deduction Theorem greatly simplifies the search for proof [Bostock]
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
A completed open branch gives an interpretation which verifies those formulae [Bostock]
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
A sequent calculus is good for comparing proof systems [Bostock]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
23. Ethics / C. Virtue Theory / 3. Virtues / d. Courage
Being unafraid (perhaps through ignorance) and being brave are two different things [Plato]
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]