Combining Texts

All the ideas for 'Laches', 'Understanding the Infinite' and 'Four Decades of Scientific Explanation'

expand these ideas     |    start again     |     specify just one area for these texts


55 ideas

1. Philosophy / A. Wisdom / 3. Wisdom Deflated
Don't assume that wisdom is the automatic consequence of old age [Plato]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
11. Knowledge Aims / A. Knowledge / 2. Understanding
It is knowing 'why' that gives scientific understanding, not knowing 'that' [Salmon]
Understanding is an extremely vague concept [Salmon]
14. Science / A. Basis of Science / 4. Prediction
Correlations can provide predictions, but only causes can give explanations [Salmon]
14. Science / B. Scientific Theories / 3. Instrumentalism
For the instrumentalists there are no scientific explanations [Salmon]
14. Science / C. Induction / 4. Reason in Induction
Good induction needs 'total evidence' - the absence at the time of any undermining evidence [Salmon]
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
Scientific explanation is not reducing the unfamiliar to the familiar [Salmon]
Why-questions can seek evidence as well as explanation [Salmon]
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
The 'inferential' conception is that all scientific explanations are arguments [Salmon]
Ontic explanations can be facts, or reports of facts [Salmon]
The three basic conceptions of scientific explanation are modal, epistemic, and ontic [Salmon]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
We must distinguish true laws because they (unlike accidental generalizations) explain things [Salmon]
Deductive-nomological explanations will predict, and their predictions will explain [Salmon]
A law is not enough for explanation - we need information about what makes a difference [Salmon]
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Flagpoles explain shadows, and not vice versa, because of temporal ordering [Salmon]
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Explanation at the quantum level will probably be by entirely new mechanisms [Salmon]
Does an item have a function the first time it occurs? [Salmon]
Explanations reveal the mechanisms which produce the facts [Salmon]
14. Science / D. Explanation / 2. Types of Explanation / l. Probabilistic explanations
Can events whose probabilities are low be explained? [Salmon]
Statistical explanation needs relevance, not high probability [Salmon]
Think of probabilities in terms of propensities rather than frequencies [Salmon]
23. Ethics / C. Virtue Theory / 3. Virtues / d. Courage
Being unafraid (perhaps through ignorance) and being brave are two different things [Plato]